[1] Neto LL, Oliveira E, Correia F, et al. The human nucleus accumbens: where is it A stereotactic, anatomical and magnetic resonance imaging study[J]. Neuromodulation, 2008, 11(1):13-22.
[2] Cami J, Farre M. Drug addiction[J]. N Engl J Med, 2003, 349(10):975-986.
[3] Mogenson GJ, Jones DL, Yim CY. From motivation to action: functional interface between the limbic system and the motor system[J]. Prog Neurobiol, 1980, 14(2-3):69-97.
[4] Mavridis I, Boviatsis E, Anagnostopoulou S. Anatomy of the human nucleus accumbens: a combined morphometric study[J]. Surg Radiol Anat, 2011, 33(5):405-414.
[5] Zahm DS. An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens[J]. Neurosci Biobehav Rev, 2000, 24(1):85-105.
[6] Baliki MN, Mansour A, Baria AT, et al. Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain[J]. J Neurosci, 2013, 33(41):16383-16393.
[7] Tepper JM, Bolam JP. Functional diversity and specificity of neostriatal interneurons[J]. Curr Opin Neurobiol, 2004,14(6):685-692.
[8] Mavridis IN. Anatomizing the “King of Neurosciences”[J]. World J Neurol, 2013, 3(2):4-6.
[9] van Dongen YC, Deniau JM, Pennartz CM, et al. Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens[J]. Neuroscience, 2005, 136(4):1049-1071.
[10]Mavridis I, Boviatsis E, Anagnostopoulou S. Stereotactic anatomy of the human nucleus accumbens: from applied mathematics to microsurgical accuracy[J]. Surg Radiol Anat, 2011, 33(7):583-594.
[11]Carlezon WJ, Thomas MJ. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis[J]. Neuropharmacology, 2009, 56(Suppl 1): 122-132.
[12]Fan P, Jiang Z, Diamond I, et al. Up-regulation of AGS3 during morphine withdrawal promotes cAMP superactivation via adenylyl cyclase 5 and 7 in rat nucleus accumbens/striatal neurons[J]. Mol Pharmacol, 2009, 76(3): 526-533.
[13]Fernandez-Espejo E. [How does the nucleus accumbens function?][J]. Rev Neurol, 2000, 30(9): 845-849.
[14]Breese GR, Sinha R, Heilig M. Chronic alcohol neuroadaptation and stress contribute to susceptibility for alcohol craving and relapse[J]. Pharmacol Ther, 2011, 129(2): 149-171.
[15]Aharon I, Becerra L, Chabris CF, et al. Noxious heat induces fMRI activation in two anatomically distinct clusters within the nucleus accumbens[J]. Neurosci Lett, 2006, 392(3): 159-164.
[16]Mavridis I, Boviatsis E, Anagnostopoulou S. The human nucleus accumbens suffers parkinsonism-related shrinkage: a novel finding[J]. Surg Radiol Anat, 2011, 33(7):595-599.
[17]Seifert CL, Magon S, Sprenger T, et al. Reduced volume of the nucleus accumbens in heroin addiction[J]. Eur Arch Psychiatry Clin Neurosci, 2015, 265(8): 637-645.
[18]Carriere N, Besson P, Dujardin K, et al. Apathy in Parkinson's disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis[J]. Mov Disord, 2014, 29(7): 897-903.
[19]Coutinho J, Ramos A F, Maia L, et al. Volumetric alterations in the nucleus accumbens and caudate nucleus in bulimia nervosa: A structural magnetic resonance imaging study[J]. Int J Eat Disord, 2015, 48(2): 206-214.
[20]Narayanaswamy JC, Jose D, Kalmady S, et al. Clinical correlates of nucleus accumbens volume in drug-naive, adult patients with obsessive-compulsive disorder[J]. Aust N Z J Psychiatry, 2013, 47(10): 930-937.
[21]Weiland BJ, Thayer RE, Depue BE, et al. Daily marijuana use is not associated with brain morphometric measures in adolescents or adults[J]. J Neurosci, 2015, 35(4): 1505-1512.
[22]Inui T, Inui-Yamamoto C, Yoshioka Y, et al. Activation of projective neurons from the nucleus accumbens to ventral pallidum by a learned aversive taste stimulus in rats: a manganese-enhanced magnetic resonance imaging study[J]. Neuroscience, 2011, 177:66-73.
[23]Cauda F, Cavanna AE, D'Agata F, et al. Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis[J]. J Cogn Neurosci, 2011, 23(10): 2864-2877.
[24]Perles-Barbacaru TA, Procissi D, Demyanenko AV, et al. Quantitative pharmacologic MRI: mapping the cerebral blood volume response to cocaine in dopamine transporter knockout mice[J]. Neuroimage, 2011, 55(2): 622-628.
[25] 高辉. 慢性酒精依赖综合症患者伏隔核MRI研究[D]. 天津: 天津医科大学, 2013: 6-8. |