[1] Swain N, Thakur M, Pathak J, et al. SOX2, OCT4 and NANOG: The core embryonic stem cell pluripotency regulators in oral carcinogenesis [J]. J Oral Maxillofac Pathol, 2020, 24(2): 368-373. DOI: 10.4103/jomfp.JOMFP_22_20.
[2] Haddad MS, Wenceslau CV, Pompeia C, et al. Cell-based technologies for Huntington's disease [J]. Dement Neuropsychol, 2016, 10(4): 287-295. DOI: 10.1590/s1980-5764-2016dn1004006.
[3] Sivandzade F, Cucullo L. Regenerative stem cell therapy for neurodegenerative diseases: an overview [J]. Int J Mol Sci, 2021, 22(4). DOI: 10.3390/ijms22042153.
[4] Aly R M. Current state of stem cell-based therapies: an overview [J]. Stem Cell Investig, 2020, 7: 8. DOI: 10.21037/sci-2020-001.
[5] Soutar MPM, Kim W-Y, Williamson R, et al. Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain [J]. J Neurochem, 2010, 115(4): 974-983. DOI: 10.1111/j.1471-4159.2010.06988.x.
[6] Ali A, Hoeflich KP, Woodgett JR. Glycogen synthase kinase-3: properties, functions, and regulation [J]. Chem Rev, 2001, 101(8): 2527-2540. DOI: 10.1021/cr000110o.
[7] Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside [J]. Semin Cancer Biol, 2019, 59: 125-132. DOI: 10.1016/j.semcancer.2019.07.009.
[8] Wang Z, Smith KS, Murphy M, et al. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy [J]. Nature, 2008, 455(7217): 1205-1209. DOI: 10.1038/nature07284.
[9] Kim W-Y, Snider WD. Functions of GSK-3 Signaling in Development of the Nervous System [J]. Front Mol Neurosci, 2011, 4: 44. DOI: 10.3389/fnmol.2011.00044.
[10] Ying QL, Stavridis M, Griffiths D, et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture [J]. Nat Biotechnol, 2003, 21(2): 183-186. DOI: 10.1038/nbt780.
[11] Pankratz MT, Li XJ, Lavaute TM, et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage [J]. Stem Cells (Dayton, Ohio), 2007, 25(6): 1511-1520. DOI: 10.1634/stemcells.2006-0707.
[12] Zhou J, Freeman TA, Ahmad F, et al. GSK-3α is a central regulator of age-related pathologies in mice [J]. J Clin Invest, 2013, 123(4): 1821-1832. DOI: 10.1172/JCI64398.
[13] Kaidanovich-Beilin O, Lipina TV, Takao K, et al. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice [J]. Mol Brain, 2009, 2: 35. DOI: 10.1186/1756-6606-2-35.
[14] Kerkela R, Kockeritz L, Macaulay K, et al. Deletion of GSK-3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation [J]. J Clin Invest, 2008, 118(11): 3609-3618. DOI: 10.1172/JCI36245.
[15] Hedgepeth CM, Conrad LJ, Zhang J, et al. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action [J]. Dev Biol, 1997, 185(1): 82-91. DOI: 10.1006/dbio.1997.8552.
[16] Hooper C, Markevich V, Plattner F, et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation [J]. Eur J Neurosci, 2007, 25(1): 81-86. DOI: 10.1111/j.1460-9568.2006.05245.x.
[17] Cao F, Hata R, Zhu P, et al. Conditional deletion of Stat3 promotes neurogenesis and inhibits astrogliogenesis in neural stem cells [J]. Biochem Biophys Res Commun, 2010, 394(3): 843-837. DOI: 10.1016/j.bbrc.2010.03.092.
[18] Tanaka Y, Yasugi T, Nagayama M, et al. JAK/STAT guarantees robust neural stem cell differentiation by shutting off biological noise [J]. Sci Rep, 2018, 8(1): 12484. DOI: 10.1038/s41598-018-30929-1.
[19] Ojeda L, Gao J, Hooten KG, et al. Critical role of PI3K/Akt/GSK3β in motoneuron specification from human neural stem cells in response to FGF2 and EGF [J]. PloS One, 2011, 6(8): e23414. DOI: 10.1371/journal.pone.0023414.
[20] Wilkinson G, Dennis D, Schuurmans C. Proneural genes in neocortical development [J]. Neuroscience, 2013, 253: 256-273. DOI: 10.1016/j.neuroscience.2013.08.029.
[21] Li S, Mattar P, Zinyk D, et al. GSK3 temporally regulates neurogenin 2 proneural activity in the neocortex [J]. J Neurosci, 2012, 32(23): 7791-805. DOI: 10.1523/JNEUROSCI.1309-12.2012.
|