中枢神经淋巴系统解剖及其与神经系统疾病关系

范咏言, 何培坤, 李彦颐, 王丽娟, 聂坤

中国临床解剖学杂志 ›› 2025, Vol. 43 ›› Issue (2) : 151-156.

PDF(1494 KB)
PDF(1494 KB)
中国临床解剖学杂志 ›› 2025, Vol. 43 ›› Issue (2) : 151-156. DOI: 10.13418/j.issn.1001-165x.2025.2.07
淋巴外科创新技术

中枢神经淋巴系统解剖及其与神经系统疾病关系

  • 范咏言,    何培坤,    李彦颐,    王丽娟,    聂坤*
作者信息 +

Recent advances in anatomy of central nervous lymphatic system and the relationship between it and nervous system diseases

  • Fan Yongyan, He Peikun, Li Yanyi, Wang Lijuan, Nie Kun*
Author information +
文章历史 +

摘要

近年来,中枢神经淋巴系统是神经科学研究的热点。中枢神经淋巴系统主要由星形胶质细胞足突围绕血管壁形成的胶质淋巴系统,以及脑膜静脉窦伴行的脑膜淋巴管组成,具有代谢废物清除、免疫功能、信号转导、物质运输和药物递送等功能,并受到水通道蛋白4、血流动力学、睡眠与昼夜节律等因素的调控。同时,该系统与神经退行性疾病、中枢神经系统脱髓鞘疾病、脑血管病等神经系统疾病的发生发展密切相关。本综述围绕中枢神经淋巴系统的解剖学结构、功能及其在神经系统疾病中的作用进行回顾,总结近年来的研究进展。

Abstract

Central nervous lymphatic system is an important breakthrough in neuroscience research in recent years. The anatomical structure of central nervous lymphatic system mainly includes glial lymphatic system formed around blood vessel wall of astrocyte foot process, and meningeal lymphatic vessels associated with meningeal venous sinus, which have metabolic waste clearance, immune function, signal transduction, material transport and drug delivery, and are regulated by AQP4, hemodynamics, sleep, and circadian rhythm and other factors. At the same time, the system is closely related to neurodegenerative diseases, central nervous system demyelinating diseases, cerebrovascular diseases, and other neurological diseases. This review focuses on anatomical structure, function, and role of nervous system diseases, and summarizes the research progress in recent years.

关键词

中枢神经淋巴系统;  /   / 胶质淋巴系统;  /   / 脑膜淋巴管;  /   / 神经系统疾病

Key words

Central nervous lymphatic system;  /   / Glial lymphatic system;  /   / Meningeal lymphatic vessels;  /   / Nervous system diseases

引用本文

导出引用
范咏言, 何培坤, 李彦颐, 王丽娟, 聂坤. 中枢神经淋巴系统解剖及其与神经系统疾病关系[J]. 中国临床解剖学杂志. 2025, 43(2): 151-156 https://doi.org/10.13418/j.issn.1001-165x.2025.2.07
Fan Yongyan, He Peikun, Li Yanyi, Wang Lijuan, Nie Kun. Recent advances in anatomy of central nervous lymphatic system and the relationship between it and nervous system diseases[J]. Chinese Journal of Clinical Anatomy. 2025, 43(2): 151-156 https://doi.org/10.13418/j.issn.1001-165x.2025.2.07
中图分类号: R742.5   

参考文献

[1]  Tian Y, Zhao M, Chen Y, et al. The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease [J]. Biomolecules, 2022,12(6):748. DOI:10.3390/biom12060 748.
[2]  Iliff J J, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β [J]. Sci Transl Med, 2012, 4(147): 147ra111. DOI: 10.1126/scitranslmed.3003748.
[3]  Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics [J]. Cell Mol Life Sci, 2021, 78(6): 2429-2457. DOI: 10.1007/s00018-020-03706-5.
[4]  Mestre H, Mori Y, Nedergaard M. The Brain's Glymphatic System: Current Controversies [J]. Trends Neurosci, 2020, 43(7): 458-466. DOI: 10.1016/j.tins.2020.04.003.
[5]  Wardlaw JM, Benveniste H, Nedergaard M, et al. Perivascular spaces in the brain: anatomy, physiology and pathology [J]. Nat Rev Neurol, 2020, 16(3): 137-153. DOI: 10.1038/s41582-020-0312-z.
[6]  Lian X, Liu Z, Gan Z, et al. Targeting the glymphatic system to promote α-synuclein clearance: a novel therapeutic strategy for Parkinson's disease [J]. Neural Regen Res, 2025. DOI: 10.4103/NRR.NRR-D-24-00764.
[7] Lohela TJ, Lilius TO, Nedergaard M. The glymphatic system: implications for drugs for central nervous system diseases [J]. Nat Rev Drug Discov, 2022, 21(10): 763-779. DOI: 10.1038/s41573-022-00500-9.
[8]  Bacyinski A, Xu M, Wang W, et al. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy [J]. Front Neuroanat, 2017, 11: 101. DOI: 10.3389/fnana.2017.00101.
[9]  Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules [J]. J Exp Med, 2015, 212(7): 991-999. DOI: 10.1084/jem.20142290.
[10]Wang L, Zhang Y, Zhao Y, et al. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice [J]. Brain Pathol, 2019, 29(2): 176-192. DOI: 10.1111/bpa.12656.
[11]Zhou Y, Cai J, Zhang W, et al. Impairment of the Glymphatic Pathway and Putative Meningeal Lymphatic Vessels in the Aging Human [J]. Ann Neurol, 2020, 87(3): 357-369. DOI: 10.1002/ana.25670. 
[12]Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid [J]. Nature, 2019, 572(7767): 62-66. DOI: 10.1038/s41586-019-1419-5.
[13]Maloveska M, Danko J, Petrovova E, et al. Dynamics of Evans blue clearance from cerebrospinal fluid into meningeal lymphatic vessels and deep cervical lymph nodes [J]. Neurol Res, 2018, 40(5): 372-380. DOI: 10.1080/01616412.2018.1446282.
[14]Plog BA, Nedergaard M. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future [J]. Annu Rev Pathol, 2018,13:379-394.DOI: 10.1146/annurev-pathol-051217-111018.
[15]Wei F, Zhang C, Xue R, et al. The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process[J]. Life Sci, 2017,182:29-40. DOI: 10.1016/j.lfs.2017.05.028.
[16]Ma Q, Decker Y, Müller A, et al. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels [J]. J Exp Med, 2019, 216(11): 2492-2502. DOI: 10.1084/jem.20190351.
[17]Li X, Wang S, Zhang D, et al. The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs [J]. Proc Natl Acad Sci USA, 2024, 121(45): e2400024121. DOI: 10.1073/pnas.2400024121.
[18]Cao Q, Yang S, Wang X, et al. Transport of β-amyloid from brain to eye causes retinal degeneration in Alzheimer's disease [J]. J Exp Med, 2024, 221(11): e20240386. DOI: 10.1084/jem.20240386.
[19]Sun B-L, Wang L-H, Yang T, et al. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases [J]. Prog Neurobiol,2018,163-164: 118-143. DOI: 10.1016/j.pneurobio.2017. 08.007.
[20]Peng S, Liu J, Liang C, et al. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders [J]. Neurobiol Dis, 2023, 179: 106035. DOI: 10.1016/j.nbd.2023.106035.
[21]Formolo DA, Yu J, Lin K, et al. Leveraging the glymphatic and meningeal lymphatic systems as therapeutic strategies in Alzheimer's disease: an updated overview of nonpharmacological therapies [J]. Mol Neurodegener, 2023, 18(1): 26. DOI: 10.1186/s13024-023-00618-3.
[22]Li W, Chen D, Liu N, et al. Modulation of lymphatic transport in the central nervous system [J]. Theranostics, 2022, 12(3): 1117-1131. DOI: 10.7150/thno.66026.
[23]Mogensen FLH, Delle C, Nedergaard M. The Glymphatic System (En)during Inflammation [J]. Int J Mol Sci, 2021, 22(14):7491. DOI: 10.3390/ijms22147491.
[24]Salvador AFM, Abduljawad N, Kipnis J. Meningeal Lymphatics in Central Nervous System Diseases [J]. Annu Rev Neurosci, 2024, 47(1): 323-344. DOI: 10.1146/annurev-neuro-113023-103045.
[25]Di Marco Barros R, Fitzpatrick Z, Clatworthy MR. The gut-meningeal immune axis: Priming brain defense against the most likely invaders [J]. J Exp Med, 2022, 219(3): e20211520. DOI: 10.1084/jem.20211520.
[26]Maneshi MM, Maki B, Gnanasambandam R, et al. Mechanical stress activates NMDA receptors in the absence of agonists [J]. Sci Rep, 2017, 7: 39610. DOI: 10.1038/srep39610.
[27]Rangroo Thrane V, Thrane AS, Plog BA, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain [J]. Sci Rep, 2013, 3: 2582. DOI: 10.1038/srep02582.
[28]Lundgaard I, Li B, Xie L, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism [J]. Nat Commun, 2015, 6: 6807. DOI: 10.1038/ncomms7807.
[29]Gomolka RS, Hablitz LM, Mestre H, et al. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation [J]. Elife, 2023, 12: e82232. DOI: 10.7554/eLife.82232.
[30]MacAulay N. Molecular mechanisms of brain water transport [J]. Nat Rev Neurosci, 2021, 22(6): 326-344. DOI: 10.1038/s41583-021-00454-8.
[31]Kálmán M, Oszwald E, Adorján I. Appearance of β-dystroglycan precedes the formation of glio-vascular end-feet in developing rat brain [J]. Eur J Histochem, 2018, 62(2): 2908. DOI: 10.4081/ejh.2018.2908.
[32]Holstein-Rønsbo S, Gan Y, Giannetto M J, et al. Glymphatic influx and clearance are accelerated by neurovascular coupling [J]. Nat Neurosci, 2023, 26(6): 1042-1053. DOI: 10.1038/s41593-023-01327-2.
[33]Jiang-Xie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health [J]. Neuron,2025, 113(1): 71-81. DOI: 10.1016/j.neuron. 2024.09.017.

[34]Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain [J]. Ann Neurol, 2014, 76(6): 845-861. DOI: 10.1002/ana.24271.

[35]Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain [J]. J Neurosci, 2013,33(46):18190-18199.DOI: 10.1523/JNEUROSCI. 1592-13.2013.
[36]Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension [J]. Nat Commun, 2018, 9(1): 4878. DOI: 10.1038/s41467-018-07318-3.
[37]Hauglund NL, Andersen M, Tokarska K, et al. Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep [J]. Cell, 2025, 188(3) :606-622.e17. DOI: 10.1016/j.cell.2024.11.027.
[38]Smyth LCD, Beschorner N, Nedergaard M, et al. Cellular Contributions to Glymphatic and Lymphatic Waste Clearance in the Brain [J]. Cold Spring Harb Perspect Biol, 2024, a041370. DOI: 10.1101/cshperspect.a041370.
[39]Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow [J]. Nat Commun, 2020, 11(1): 4411. DOI: 10.1038/s41467-020-18115-2.
[40]Smyth LCD, Plog BA, Kipnis J. Rest and rinse: sleeping rhythms drive brain detox [J]. Trends Immunol, 2025, 46(3):189-191. DOI: 10.1016/j.it.2025.02.007.
[41]Vinje V, Eklund A, Mardal KA, et al. Intracranial pressure elevation alters CSF clearance pathways [J]. Fluids Barriers CNS, 2020, 17(1): 29. DOI: 10.1186/s12987-020-00189-1.
[42]Bolte AC, Dutta AB, Hurt ME, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis [J]. Nat Commun, 2020, 11(1): 4524. DOI: 10.1038/s41467-020-18113-4.
[43]Hablitz LM, Vinitsky HS, Sun Q, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia [J]. Sci Adv, 2019, 5(2): eaav5447. DOI: 10.1126/sciadv.aav5447.
[44]Vizcarra VS, Fame RM, Hablitz LM. Circadian Mechanisms in Brain Fluid Biology [J]. Circ Res, 2024, 134(6): 711-726. DOI: 10.1161/CIRCRESAHA.123.323516.
[45]Yang J, Lunde LK, Nuntagij P, et al. Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer's disease [J]. J Alzheimers Dis, 2011, 27(4): 711-722. DOI: 10.3233/JAD-2011-110725.
[46]Hsu JL, Wei YC, Toh CH, et al. Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease [J]. Ann Neurol, 2023, 93(1): 164-174. DOI: 10.1002/ana.26516.
[47]Murdock MH, Yang CY, Sun N, et al. Multisensory gamma stimulation promotes glymphatic clearance of amyloid [J]. Nature, 2024, 627(8002): 149-156. DOI: 10.1038/s41586-024-07132-6.
[48]Li X, Zhang C, Fang Y, et al. Promising outcomes 5 weeks after a surgical cervical shunting procedure to unclog cerebral lymphatic systems in a patient with Alzheimer's disease [J]. Gen Psychiatr, 2024, 37(3): e101641. DOI: 10.1136/gpsych-2024-101641.
[49]Si X, Dai S, Fang Y, et al. Matrix metalloproteinase-9 inhibition prevents aquaporin-4 depolarization-mediated glymphatic dysfunction in Parkinson's disease [J]. J Adv Res, 2024, 56: 125-136. DOI: 10.1016/j.jare.2023.03.004.
[50]Cai X, Chen Z, He C, et al. Diffusion along perivascular spaces provides evidence interlinking compromised glymphatic function with aging in Parkinson's disease [J]. CNS Neurosci Ther, 2023, 29(1): 111-121. DOI: 10.1111/cns.13984.
[51]He P, Shi L, Li Y, et al. The Association of the Glymphatic Function with Parkinson's Disease Symptoms: Neuroimaging Evidence from Longitudinal and Cross-Sectional Studies [J]. Ann Neurol, 2023, 94(4): 672-683. DOI: 10.1002/ana.26729.
[52]He P, Gao Y, Shi L, et al. Motor progression phenotypes in early-stage Parkinson's Disease: A clinical prediction model and the role of glymphatic system imaging biomarkers [J]. Neurosci Lett, 2023, 814: 137435. DOI: 10.1016/j.neulet.2023.137435.
[53]Ding XB, Wang XX, Xia DH, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease [J]. Nat Med, 2021, 27(3): 411-418. DOI: 10.1038/s41591-020-01198-1.
[54]Brosnan CF, Raine CS. The astrocyte in multiple sclerosis revisited [J]. Glia, 2013, 61(4): 453-465. DOI: 10.1002/glia.22443.
[55]Carotenuto A, Cacciaguerra L, Pagani E, et al. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability [J]. Brain, 2022, 145(8): 2785-2795. DOI: 10.1093/brain/awab454.
[56]Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature [J]. Nat Neurosci, 2018, 21(10): 1380-1391. DOI: 10.1038/s41593-018-0227-9.
[57]Yanev P, Poinsatte K, Hominick D, et al. Impaired meningeal lymphatic vessel development worsens stroke outcome [J]. J Cereb Blood Flow Metab, 2020, 40(2): 263-275. DOI: 10.1177/0271678X18822921.
[58]Pu T, Zou W, Feng W, et al. Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage [J]. Exp Neurobiol, 2019, 28(1): 104-118. DOI: 10.5607/en.2019.28.1.104.
[59] Wang X, Zhang A, Yu Q, et al. Single-Cell RNA Sequencing and Spatial Transcriptomics Reveal Pathogenesis of Meningeal Lymphatic Dysfunction after Experimental Subarachnoid Hemorrhage [J]. Adv Sci (Weinh), 2023, 10(21): e2301428. DOI: 10.1002/advs.202301428.
[60] Tian Y, Cai X, Zhou Y, et al. Impaired glymphatic system as evidenced by low diffusivity along perivascular spaces is associated with cerebral small vessel disease: a population-based study [J]. Stroke Vasc Neurol, 2023, 8(5): 413-423. DOI: 10.1136/svn-2022-002191.

基金

国家自然科学基金(82471257,82371249);广东省自然科学基金(2025A1515012506);广东省科技计划项目(2023B110009);广州市科技计划项目(202201000005)

PDF(1494 KB)

Accesses

Citation

Detail

段落导航
相关文章

/