[1] Tian Y, Zhao M, Chen Y, et al. The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease [J]. Biomolecules, 2022,12(6):748. DOI:10.3390/biom12060 748.
[2] Iliff J J, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β [J]. Sci Transl Med, 2012, 4(147): 147ra111. DOI: 10.1126/scitranslmed.3003748.
[3] Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics [J]. Cell Mol Life Sci, 2021, 78(6): 2429-2457. DOI: 10.1007/s00018-020-03706-5.
[4] Mestre H, Mori Y, Nedergaard M. The Brain's Glymphatic System: Current Controversies [J]. Trends Neurosci, 2020, 43(7): 458-466. DOI: 10.1016/j.tins.2020.04.003.
[5] Wardlaw JM, Benveniste H, Nedergaard M, et al. Perivascular spaces in the brain: anatomy, physiology and pathology [J]. Nat Rev Neurol, 2020, 16(3): 137-153. DOI: 10.1038/s41582-020-0312-z.
[6] Lian X, Liu Z, Gan Z, et al. Targeting the glymphatic system to promote α-synuclein clearance: a novel therapeutic strategy for Parkinson's disease [J]. Neural Regen Res, 2025. DOI: 10.4103/NRR.NRR-D-24-00764.
[7] Lohela TJ, Lilius TO, Nedergaard M. The glymphatic system: implications for drugs for central nervous system diseases [J]. Nat Rev Drug Discov, 2022, 21(10): 763-779. DOI: 10.1038/s41573-022-00500-9.
[8] Bacyinski A, Xu M, Wang W, et al. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy [J]. Front Neuroanat, 2017, 11: 101. DOI: 10.3389/fnana.2017.00101.
[9] Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules [J]. J Exp Med, 2015, 212(7): 991-999. DOI: 10.1084/jem.20142290.
[10]Wang L, Zhang Y, Zhao Y, et al. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice [J]. Brain Pathol, 2019, 29(2): 176-192. DOI: 10.1111/bpa.12656.
[11]Zhou Y, Cai J, Zhang W, et al. Impairment of the Glymphatic Pathway and Putative Meningeal Lymphatic Vessels in the Aging Human [J]. Ann Neurol, 2020, 87(3): 357-369. DOI: 10.1002/ana.25670.
[12]Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid [J]. Nature, 2019, 572(7767): 62-66. DOI: 10.1038/s41586-019-1419-5.
[13]Maloveska M, Danko J, Petrovova E, et al. Dynamics of Evans blue clearance from cerebrospinal fluid into meningeal lymphatic vessels and deep cervical lymph nodes [J]. Neurol Res, 2018, 40(5): 372-380. DOI: 10.1080/01616412.2018.1446282.
[14]Plog BA, Nedergaard M. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future [J]. Annu Rev Pathol, 2018,13:379-394.DOI: 10.1146/annurev-pathol-051217-111018.
[15]Wei F, Zhang C, Xue R, et al. The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process[J]. Life Sci, 2017,182:29-40. DOI: 10.1016/j.lfs.2017.05.028.
[16]Ma Q, Decker Y, Müller A, et al. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels [J]. J Exp Med, 2019, 216(11): 2492-2502. DOI: 10.1084/jem.20190351.
[17]Li X, Wang S, Zhang D, et al. The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs [J]. Proc Natl Acad Sci USA, 2024, 121(45): e2400024121. DOI: 10.1073/pnas.2400024121.
[18]Cao Q, Yang S, Wang X, et al. Transport of β-amyloid from brain to eye causes retinal degeneration in Alzheimer's disease [J]. J Exp Med, 2024, 221(11): e20240386. DOI: 10.1084/jem.20240386.
[19]Sun B-L, Wang L-H, Yang T, et al. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases [J]. Prog Neurobiol,2018,163-164: 118-143. DOI: 10.1016/j.pneurobio.2017. 08.007.
[20]Peng S, Liu J, Liang C, et al. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders [J]. Neurobiol Dis, 2023, 179: 106035. DOI: 10.1016/j.nbd.2023.106035.
[21]Formolo DA, Yu J, Lin K, et al. Leveraging the glymphatic and meningeal lymphatic systems as therapeutic strategies in Alzheimer's disease: an updated overview of nonpharmacological therapies [J]. Mol Neurodegener, 2023, 18(1): 26. DOI: 10.1186/s13024-023-00618-3.
[22]Li W, Chen D, Liu N, et al. Modulation of lymphatic transport in the central nervous system [J]. Theranostics, 2022, 12(3): 1117-1131. DOI: 10.7150/thno.66026.
[23]Mogensen FLH, Delle C, Nedergaard M. The Glymphatic System (En)during Inflammation [J]. Int J Mol Sci, 2021, 22(14):7491. DOI: 10.3390/ijms22147491.
[24]Salvador AFM, Abduljawad N, Kipnis J. Meningeal Lymphatics in Central Nervous System Diseases [J]. Annu Rev Neurosci, 2024, 47(1): 323-344. DOI: 10.1146/annurev-neuro-113023-103045.
[25]Di Marco Barros R, Fitzpatrick Z, Clatworthy MR. The gut-meningeal immune axis: Priming brain defense against the most likely invaders [J]. J Exp Med, 2022, 219(3): e20211520. DOI: 10.1084/jem.20211520.
[26]Maneshi MM, Maki B, Gnanasambandam R, et al. Mechanical stress activates NMDA receptors in the absence of agonists [J]. Sci Rep, 2017, 7: 39610. DOI: 10.1038/srep39610.
[27]Rangroo Thrane V, Thrane AS, Plog BA, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain [J]. Sci Rep, 2013, 3: 2582. DOI: 10.1038/srep02582.
[28]Lundgaard I, Li B, Xie L, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism [J]. Nat Commun, 2015, 6: 6807. DOI: 10.1038/ncomms7807.
[29]Gomolka RS, Hablitz LM, Mestre H, et al. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation [J]. Elife, 2023, 12: e82232. DOI: 10.7554/eLife.82232.
[30]MacAulay N. Molecular mechanisms of brain water transport [J]. Nat Rev Neurosci, 2021, 22(6): 326-344. DOI: 10.1038/s41583-021-00454-8.
[31]Kálmán M, Oszwald E, Adorján I. Appearance of β-dystroglycan precedes the formation of glio-vascular end-feet in developing rat brain [J]. Eur J Histochem, 2018, 62(2): 2908. DOI: 10.4081/ejh.2018.2908.
[32]Holstein-Rønsbo S, Gan Y, Giannetto M J, et al. Glymphatic influx and clearance are accelerated by neurovascular coupling [J]. Nat Neurosci, 2023, 26(6): 1042-1053. DOI: 10.1038/s41593-023-01327-2.
[33]Jiang-Xie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health [J]. Neuron,2025, 113(1): 71-81. DOI: 10.1016/j.neuron. 2024.09.017.
[34]Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain [J]. Ann Neurol, 2014, 76(6): 845-861. DOI: 10.1002/ana.24271.
[35]Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain [J]. J Neurosci, 2013,33(46):18190-18199.DOI: 10.1523/JNEUROSCI. 1592-13.2013.
[36]Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension [J]. Nat Commun, 2018, 9(1): 4878. DOI: 10.1038/s41467-018-07318-3.
[37]Hauglund NL, Andersen M, Tokarska K, et al. Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep [J]. Cell, 2025, 188(3) :606-622.e17. DOI: 10.1016/j.cell.2024.11.027.
[38]Smyth LCD, Beschorner N, Nedergaard M, et al. Cellular Contributions to Glymphatic and Lymphatic Waste Clearance in the Brain [J]. Cold Spring Harb Perspect Biol, 2024, a041370. DOI: 10.1101/cshperspect.a041370.
[39]Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow [J]. Nat Commun, 2020, 11(1): 4411. DOI: 10.1038/s41467-020-18115-2.
[40]Smyth LCD, Plog BA, Kipnis J. Rest and rinse: sleeping rhythms drive brain detox [J]. Trends Immunol, 2025, 46(3):189-191. DOI: 10.1016/j.it.2025.02.007.
[41]Vinje V, Eklund A, Mardal KA, et al. Intracranial pressure elevation alters CSF clearance pathways [J]. Fluids Barriers CNS, 2020, 17(1): 29. DOI: 10.1186/s12987-020-00189-1.
[42]Bolte AC, Dutta AB, Hurt ME, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis [J]. Nat Commun, 2020, 11(1): 4524. DOI: 10.1038/s41467-020-18113-4.
[43]Hablitz LM, Vinitsky HS, Sun Q, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia [J]. Sci Adv, 2019, 5(2): eaav5447. DOI: 10.1126/sciadv.aav5447.
[44]Vizcarra VS, Fame RM, Hablitz LM. Circadian Mechanisms in Brain Fluid Biology [J]. Circ Res, 2024, 134(6): 711-726. DOI: 10.1161/CIRCRESAHA.123.323516.
[45]Yang J, Lunde LK, Nuntagij P, et al. Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer's disease [J]. J Alzheimers Dis, 2011, 27(4): 711-722. DOI: 10.3233/JAD-2011-110725.
[46]Hsu JL, Wei YC, Toh CH, et al. Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease [J]. Ann Neurol, 2023, 93(1): 164-174. DOI: 10.1002/ana.26516.
[47]Murdock MH, Yang CY, Sun N, et al. Multisensory gamma stimulation promotes glymphatic clearance of amyloid [J]. Nature, 2024, 627(8002): 149-156. DOI: 10.1038/s41586-024-07132-6.
[48]Li X, Zhang C, Fang Y, et al. Promising outcomes 5 weeks after a surgical cervical shunting procedure to unclog cerebral lymphatic systems in a patient with Alzheimer's disease [J]. Gen Psychiatr, 2024, 37(3): e101641. DOI: 10.1136/gpsych-2024-101641.
[49]Si X, Dai S, Fang Y, et al. Matrix metalloproteinase-9 inhibition prevents aquaporin-4 depolarization-mediated glymphatic dysfunction in Parkinson's disease [J]. J Adv Res, 2024, 56: 125-136. DOI: 10.1016/j.jare.2023.03.004.
[50]Cai X, Chen Z, He C, et al. Diffusion along perivascular spaces provides evidence interlinking compromised glymphatic function with aging in Parkinson's disease [J]. CNS Neurosci Ther, 2023, 29(1): 111-121. DOI: 10.1111/cns.13984.
[51]He P, Shi L, Li Y, et al. The Association of the Glymphatic Function with Parkinson's Disease Symptoms: Neuroimaging Evidence from Longitudinal and Cross-Sectional Studies [J]. Ann Neurol, 2023, 94(4): 672-683. DOI: 10.1002/ana.26729.
[52]He P, Gao Y, Shi L, et al. Motor progression phenotypes in early-stage Parkinson's Disease: A clinical prediction model and the role of glymphatic system imaging biomarkers [J]. Neurosci Lett, 2023, 814: 137435. DOI: 10.1016/j.neulet.2023.137435.
[53]Ding XB, Wang XX, Xia DH, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease [J]. Nat Med, 2021, 27(3): 411-418. DOI: 10.1038/s41591-020-01198-1.
[54]Brosnan CF, Raine CS. The astrocyte in multiple sclerosis revisited [J]. Glia, 2013, 61(4): 453-465. DOI: 10.1002/glia.22443.
[55]Carotenuto A, Cacciaguerra L, Pagani E, et al. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability [J]. Brain, 2022, 145(8): 2785-2795. DOI: 10.1093/brain/awab454.
[56]Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature [J]. Nat Neurosci, 2018, 21(10): 1380-1391. DOI: 10.1038/s41593-018-0227-9.
[57]Yanev P, Poinsatte K, Hominick D, et al. Impaired meningeal lymphatic vessel development worsens stroke outcome [J]. J Cereb Blood Flow Metab, 2020, 40(2): 263-275. DOI: 10.1177/0271678X18822921.
[58]Pu T, Zou W, Feng W, et al. Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage [J]. Exp Neurobiol, 2019, 28(1): 104-118. DOI: 10.5607/en.2019.28.1.104.
[59] Wang X, Zhang A, Yu Q, et al. Single-Cell RNA Sequencing and Spatial Transcriptomics Reveal Pathogenesis of Meningeal Lymphatic Dysfunction after Experimental Subarachnoid Hemorrhage [J]. Adv Sci (Weinh), 2023, 10(21): e2301428. DOI: 10.1002/advs.202301428.
[60] Tian Y, Cai X, Zhou Y, et al. Impaired glymphatic system as evidenced by low diffusivity along perivascular spaces is associated with cerebral small vessel disease: a population-based study [J]. Stroke Vasc Neurol, 2023, 8(5): 413-423. DOI: 10.1136/svn-2022-002191.