目的 探讨体外炎性环境中肌纤维内NLRP3炎症小体的激活、亚细胞定位及其3D重建。方法 C2C12细胞体外培养、马血清分化;脂多糖(Lipopolysaccharide/LPS)及尼日利亚菌素(Nigericin/Nig)刺激C2C12肌管内NLRP3炎症小体激活;qPCR及Western blot分析NLRP3、ASC、Caspase-1基因及蛋白水平;免疫荧光分析NLRP3、ASC的聚集与共定位;共聚焦观察、Imaris软件重建显示聚合态NLRP3、ASC与特定细胞器(高尔基体、线粒体、内质网)的关联。 结果 体外条件下,LPS/Nig联合刺激可致肌纤维内NLRP3、ASC、Caspase-1基因、蛋白水平上调,胞浆内可见NLRP3、ASC聚集;肌纤维内线粒体功能分子TOM20、高尔基体分子TGN38显著上调,聚集态NLRP3、ASC与线粒体、高尔基体存在共定位。 结论 LPS/Nig刺激可诱导骨骼肌纤维内NLRP3炎症小体激活。活化的NLRP3炎症小体组分与线粒体及高尔基体密切关联。
Abstract
Objective To investigate the activation, subcellular localization, and 3D reconstruction of the NLRP3 inflammasome within muscle fibers under in vitro inflammatory conditions. Methods C2C12 cells were cultured in vitro and differentiated with horse serum. Lipopolysaccharide (LPS) and Nigericin (Nig) were used to stimulate NLRP3 inflammasome activation in C2C12 myotubes. qPCR and Western blot were employed to analyze the gene and protein levels of NLRP3, ASC, and Caspase-1. Immunofluorescence analysis was performed to assess NLRP3 and ASC aggregation and co-localization. Confocal microscopy and Imaris software were used to visualize and reconstruct the associations of aggregated NLRP3 and ASC with specific organelles, such as the Golgi apparatus, mitochondria, and endoplasmic reticulum. Results In vitro, LPS/Nig co-stimulation increased the gene and protein expression of NLRP3, ASC, and Caspase-1 in muscle fibers, with cytoplasmic aggregation of NLRP3 and ASC observed. The mitochondrial functional molecule TOM20 and Golgi marker TGN38 were significantly upregulated, and co-localization was detected between aggregated NLRP3, ASC, and both mitochondria and the Golgi apparatus. Conclusions LPS/Nig stimulation induces activation of the NLRP3 inflammasome in skeletal muscle fibers. The activated components of the NLRP3 inflammasome are closely associated with mitochondria and the Golgi apparatus.
关键词
NLRP3炎症小体 /
  /
  /
C2C12细胞 /
  /
  /
Imaris /
  /
  /
3D重建 /
  /
  /
细胞器
Key words
NLRP3 Inflammasome /
  /
  /
  /
C2C12 /
  /
  /
Imaris /
  /
  /
3D Reconstruction /
  /
  /
Organelles
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease[J]. Annu Rev Cell Dev Biol,2012,28:137-161.DOI: 10.1146/annurev-cellbio-101011-155745.
[2] Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation[J]. Ann N Y Acad Sci, 2014,1319(1):82-95. DOI:10.1111/nyas.12458.
[3] Zhang WJ, Li KY, Wang H, et al. NLRP3 Inflammasome: A key contributor to the inflammation formation[J]. Food Chem Toxicol, 2023,174 (2023): 113683. DOI: 10.1016/j.fct.2023.113683.
[4] Fu J, Wu H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation[J]. Annu Rev Immunol, 2023, 41:301-316. DOI: 10.1146/annurev-immunol-081022-021207.
[5] 丁恺志, 龚妍春, 李晓诺, 等. NLRP3炎性小体在肌肉骨骼系统疾病中的作用[J]. 生物工程学报,2024,40(02):337-349.DOI:10.13345/j.cjb.230378.
[6] Huard J,Li Y,Fu FH.Current concepts review-Muscle injuries and repair:Current trends in research[J].J Bone Joint Surg, 2002, 84(5):822-832.DOI:10.2106/00004623-200205000-00022.
[7] Kelley N, Jeltema D, He Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation[J]. Int J Mol Sci, 2019, 20(13):3328. DOI: 10.3390/ijms20133328.
[8] Afzali AM, Müntefering T, Ruck T, et al. Skeletal muscle cells actively shape (auto)immune responses[J]. Autoimmun Rev, 2018, 17(5):518-529. DOI: 10.1016/j.autrev.2017.12.005.
[9] Chen J, Chen ZJ. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation[J]. Nature, 2018, 564(7734):71-76. DOI: 10.1038/s41586-018-0761-3.
[10] Eggelbusch M, Shi A, Broeksma BC, et al. The NLRP3 inflammasome contributes to inflammation-induced morphological and metabolic alterations in skeletal muscle[J]. J Cachexia Sarcopenia Muscle, 2022, 13(6):3048-3061. DOI: 10.1002/jcsm.13062.
[11] Zheng J, Yao L, Zhou Y, et al. A novel function of NLRP3 independent of inflammasome as a key transcription factor of IL-33 in epithelial cells of atopic dermatitis[J]. Cell Death Dis, 2024,15(3):231. DOI:10.1038/s41419-021-04159-9
[12]Shin JI, Lee KH, Kronbichler A, et al. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review[J]. J Autoimmun, 2019, 103:102299. DOI: 10.1016/j.jaut.2019.06.010.
[13] Huang N, Kny M, Riediger F, et al. Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy[J]. Intensive Care Med Exp, 2017, 5(1):3. DOI: 10.1186.
[14] Li W, Moylan JS, Reid MB, et al. Interleukin-1 stimulates catabolism in C2C12 myotubes[J]. Am J Physiol Cell Physiol, 2009, 297(3):C706-C714. DOI: 10.1152/ajpcell.00626.2008.
[15]Wiendl H, Hohlfeld R, Kieseier BC. Immunobiology of muscle: advances in understanding an immunological microenvironment[J]. Trends Immunol, 2005, 26(7):373-380. DOI: 10.1016/j.it.2005.05.003.
[16] Afzali AM, Müntefering T, Ruck T, et al. Skeletal muscle cells actively shape (auto)immune responses[J]. Autoimmun Rev, 2018, 17(5):518-529. DOI: 10.1016/j.autrev.2017.12.005.
基金
国家自然科学基金面上项目 (32071181);广 东 省 自 然科学基金面上项目(2023A1515012191);国家重点研发计划 (2022YFF1202603)