利用优化的Cas9 RNP技术高效建立人前B淋巴细胞RAG1基因c.946T>G点突变细胞系及其功能分析

刘永祥, 刘彩凤, 李梓烁, 黎允诗, 陈杏梅, 周娜, 周少虎, 黄雪坤

中国临床解剖学杂志 ›› 2025, Vol. 43 ›› Issue (2) : 175-182.

PDF(3322 KB)
PDF(3322 KB)
中国临床解剖学杂志 ›› 2025, Vol. 43 ›› Issue (2) : 175-182. DOI: 10.13418/j.issn.1001-165x.2025.2.11
实验研究

利用优化的Cas9 RNP技术高效建立人前B淋巴细胞RAG1基因c.946T>G点突变细胞系及其功能分析

  • 刘永祥1,    刘彩凤2,    李梓烁1,    黎允诗1,    陈杏梅1,    周娜1,    周少虎1*,    黄雪坤1*
作者信息 +

Efficient establishment of human pre-B lymphocyte RAG1 c.946T>G point mutation cell line using optimized Cas9 RNP technology and its function analysis

  • Liu Yongxiang1, Liu Caifeng2, Li Zishuo1, Li Yunshi1, Chen Xingmei1, Zhou Na1, Zhou Shaohu1*, Huang Xuekun1*
Author information +
文章历史 +

摘要

目的   利用优化的CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR)技术,高效建立一种通过递送新型Cas9-gRNA核糖核蛋白复合物(RNP)制备人类重组激活基因1(RAG1)c.946T>G点突变的前B淋巴细胞系的方法,并对突变体进行功能分析。 方法    实验以人前B淋巴细胞系(Nalm6细胞)为研究对象,在体外将化学修饰的gRNA(guide RNA)和高保真HIFI Cas9蛋白孵育形成RNP复合物,通过细胞核转染技术将RNP和含RAG1(T>G)目标突变与同义突变(C>A)的超分子单链寡核苷酸(Ultramer-ssODNs)同源模板带入细胞内,诱导RAG1基因发生切割与重组,T7E Ⅰ 酶切检测基因编辑效率,并经计数稀释法进行单克隆筛选,Sanger测序鉴定基因型。  结果   成功构建RAG1(c.946T>G)纯合点突变的细胞系,切割效率高达78.21%,单克隆筛选获得较高比例33.33%(4/12)的目标单克隆。通过功能实验发现c.946T>G点突变导致前B淋巴细胞RAG1、RAG2蛋白表达下调,细胞凋亡比例增多,可能是导致最终成熟B淋巴细胞的生成减少的原因。  结论    该研究通过优化的Cas9 RNP技术高效获得RAG1基因c.946T>G纯合点突变的前B淋巴细胞系,为单碱基突变疾病模型的建立提供实验依据,更为提升剪切精确性、提高转染效率提供了新的方法。

Abstract

Objective   Using enhanced CRISPR/Cas9 technology (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR), to construct an efficient method for producing a human pre-B lymphocyte line with the recombination activating gene 1 (RAG1) c.946 T>G point mutation by delivering a novel Cas9-gRNA ribonucleoprotein (RNP) complex and investigate the mutant's function.   Methods   Human pre-B lymphocyte cell line (Nalm6 cell) was employed as the research subject in this study. RNP complexes were generated in vitro by combining high-fidelity HIFI Cas9 protein with chemically modified gRNA (gRNA). Using nuclear transfection technique, RNP and ultramer single-stranded oligodeoxynucleotides (Ultramer-ssODNs) homologous templates containing RAG1 c.946T>G target mutation and synonymous mutation (C>A) were introduced into cells to induce RAG1 gene cleavage and recombination. The gene editing efficiency was detected by T7E I digestion assay, and monoclonal screening was performed by counting dilution method. Genotypes were identified by Sanger sequencing.  Results Ultimately, the RAG1 (c.946T>G) homozygous point mutation cell line was successfully constructed, and the cleavage efficiency reached 78.21%. Additionally, a high percentage of 33.33% (4/12) of the desired monoclonal was acquired using monoclonal selection. Preliminary functional investigations revealed that the c.946T>G point mutation decreased expression of RAG1 and RAG2 proteins in pre-B cells and increased apoptosis rate, which could explain the decrease in the generation of mature B lymphocytes.   Conclusions  This study's optimized Cas9 RNP technology effectively produce the RAG1 c.946T>G homozygous point mutation in the pre-B lymphocyte line, providing experimental basis for the creation of a single base mutation disease model as well as a novel technique for enhancing edit accuracy and improving transfection efficiency.

关键词

原发性免疫缺陷;  /   / 前B淋巴细胞;  /   / 核糖核蛋白复合物;  /   / RAG1 

Key words

Primary immunodeficiency;  /   / Pre-B lymphocyte;  /   /  Ribonucleoprotein complex;  /   / RAG1

引用本文

导出引用
刘永祥, 刘彩凤, 李梓烁, 黎允诗, 陈杏梅, 周娜, 周少虎, 黄雪坤. 利用优化的Cas9 RNP技术高效建立人前B淋巴细胞RAG1基因c.946T>G点突变细胞系及其功能分析[J]. 中国临床解剖学杂志. 2025, 43(2): 175-182 https://doi.org/10.13418/j.issn.1001-165x.2025.2.11
Liu Yongxiang, Liu Caifeng, Li Zishuo, Li Yunshi, Chen Xingmei, Zhou Na, Zhou Shaohu, Huang Xuekun. Efficient establishment of human pre-B lymphocyte RAG1 c.946T>G point mutation cell line using optimized Cas9 RNP technology and its function analysis[J]. Chinese Journal of Clinical Anatomy. 2025, 43(2): 175-182 https://doi.org/10.13418/j.issn.1001-165x.2025.2.11
中图分类号: R392    

参考文献

[1] Picard C, Al-Herz W, Bousfiha A, et al. Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015 [J]. J Clin Immunol, 2015, 35(8): 696-726. DOI: 10.1007/s10875-015-0201-1.
[2] Shetty K, Schatz DG. Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination [J]. Mol Cell Biol, 2015, 35(21): 3701-3713. DOI: 10.1128/mcb.00219-15.
[3]  Buelow BJ, Routes JM, Verbsky JW. Newborn screening for SCID: where are we now? [J]. Expert Rev Clin Immunol, 2014, 10(12): 1649-1657. DOI: 10.1586/1744666x.2014.980816.
[4]  刘永祥, 段雨薇, 翁治委, 等. RAG1基因新发现变异位点的结构分析及致病性预测 [J]. 中华生殖与避孕杂志, 2023, 43(3): 295-301. DOI: 10.3760/cma.j.cn101441-20220124-00038.
[5]  Han AR, Shin HR, Kwon J, et al. Highly efficient genome editing via CRISPR-Cas9 ribonucleoprotein (RNP) delivery in mesenchymal stem cells [J]. BMB Rep, 2024, 57(1): 60-65. DOI: 10.5483/BMBRep.2023-0113.
[6] Zhang S, Shen J, Li D, et al. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing [J]. Theranostics, 2021, 11(2): 614-648. DOI: 10.7150/thno.47007.
[7]  Kamali E, Rahbarizadeh F, Hojati Z, et al. CRISPR/Cas9-mediated knockout of clinically relevant alloantigenes in human primary T cells [J]. BMC Biotechnol, 2021, 21(1): 9. DOI: 10.1186/s12896-020-00665-4.
[8]  Shahriar SA, Islam MN, Chun CNW, et al. Control of Plant Viral Diseases by CRISPR/Cas9: Resistance Mechanisms, Strategies and Challenges in Food Crops [J]. Plants (Basel), 2021, 10(7). DOI: 10.3390/plants10071264.
[9]  Kwart D, Paquet D, Teo S, et al. Precise and efficient scarless genome editing in stem cells using CORRECT [J]. Nat Protoc, 2017, 12(2): 329-354. DOI: 10.1038/nprot.2016.171.
[10]高利利, 王聪聪, 杨帆, 等. CRISPR/Cas9介导的RPSA基因敲除细胞系的建立及其应用 [J]. 微生物学报, 2021, 61(07): 1945-1956. DOI: 10.13343/j.cnki.wsxb.20200404.
[11]Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges [J]. Nat Med, 2015, 21(2): 121-131. DOI: 10.1038/nm.3793.
[12]Wang HX, Li M, Lee CM, et al. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery [J]. Chem Rev, 2017, 117(15): 9874-9906. DOI: 10.1021/acs.chemrev.6b00799.
[13]刘永祥, 麦庆云, 黎允诗, 等. CORRECT介导的人HBB-28基因定点突变细胞株的建立及其应用 [J]. 广西科学, 2022, 29(06): 1125-1133. DOI: 10.13656/j.cnki.gxkx.20230110.012.
[14]Ryan DE, Taussig D, Steinfeld I, et al. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs [J]. Nucleic Acids Res, 2018, 46(2): 792-803. DOI: 10.1093/nar/gkx1199.
[15]Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing [J]. Chem Biol, 2012, 19(8): 937-954. DOI: 10.1016/j.chembiol.2012.07.011.
[16]Kocak DD, Josephs EA, Bhandarkar V, et al. Increasing the specificity of CRISPR systems with engineered RNA secondary structures [J]. Nat Biotechnol, 2019, 37(6): 657-666. DOI: 10.1038/s41587-019-0095-1.
[17]Vakulskas CA, Dever DP, Rettig GR, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells [J]. Nat Med, 2018, 24(8): 1216-1224. DOI: 10.1038/s41591-018-0137-0.
[18]Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells [J]. Cell Stem Cell, 2015, 16(2): 142-147. DOI: 10.1016/j.stem.2015.01.003.
[19]Jacobi AM, Rettig GR, Turk R, et al. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes [J]. Methods, 2017, 121-122: 16-28. DOI: 10.1016/j.ymeth.2017.03.021.
[20] Oh SA, Seki A, Rutz S. Ribonucleoprotein Transfection for CRISPR/Cas9-Mediated Gene Knockout in Primary T Cells [J]. Curr Protoc Immunol, 2019, 124(1): e69. DOI: 10.1002/cpim.69.

基金

广东省医学科研基金项目(A2023401);国家中医药传承创新中心科研专项青年项目(2023QN02);广东省中医药局科研项目(20241103)

PDF(3322 KB)

Accesses

Citation

Detail

段落导航
相关文章

/