[1] Buttermann GR, Freeman AL, Beaubien BP. In vitro biomechanics of an expandable vertebral body replacement with self-adjusting end plates [J]. Spine J, 2010,10(11):1024-1031. [2] Cardenas RJ, Javalkar V, Patil S, et al.Comparison of allograft bone and titanium cages for vertebral body replacement in the thoracolumbar spine: a biomechanical study [J]. Neurosurgery, 2010, 66(6 Suppl Operative):314-318. [3] Nouda S, Tomita S, Kin A, et al. Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement [J]. Spine, 2009, 34(24): 2613-2618. [4] Wilke HJ, Krischak S, Claes LE. Formalin fixation strongly influences biomechanical properties of the spine [J]. J Biomech, 1996, 29(12):1629-1631. [5] Kumar N, Kukreti S, Ishaque M, et al. Functional anatomy of the deer spine: an appropriate biomechanical model for the human spine [J]. Anal Rec, 2002, 266(2):108-117. [6] Panjabi MM, Kifune M, Liu W, et al. Graded thoracolumbar spinal injuries: development of multidirectional instability [J]. Eur Spine J,1998, 7(4): 332-339. [7] Kettler A, Liakos L, Haegele B, et al. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests [J]? Eur Spine J, 2007, 16(12):2186-2192. [8] Tezeren G, Gumus C, Bulut O, et al. Anterior versus modified combined instrumentation for burst fractures of the thoracolumbar spine: a biomechanical study in calves [J]. J Orthop Surg (Hong Kong), 2008, 16(3):281-284. [9] Sheng SR, Wang XY, Xu HZ, et al. Anatomy of large animal spines and its comparison to the human spine: a systematic review [J]. Eur Spine J, 2010, 19(1):46-56. [10]Hongo M, Ilharreborde B, Gay RE, et al. Biomechanical evaluation of a new fixation device for the thoracic spine [J].Eur Spine J, 2009, 18(8):1213-1219. [11]Buckley JM, Kuo CC, Cheng LC, et al. Relative strength of thoracic vertebrae in axial compression versus flexion [J]. Spine J, 2009, 9(6):478-485. [12] Reinhold M, Schmoelz W, Canto F, et al. A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine [J]. Arch Orthop Trauma Surg, 2009,129(10):1375-1382. [13] Schmoelz W, Onder U, Martin A, et al. Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment [J]. Eur Spine J, 2009, 18(10):1478-1485. [14] Sun E, Alkalay R, Vader D, et al. Preventing distal pullout of posterior spine instrumentation in thoracic hyperkyphosis a biomechanical analysis [J]. J Spinal Disord Tech, 2009, 22(4):270-277. [15] Wang XY, Dai LY, Xu HZ, et al. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation: An in vitro study [J]. J Clin Neurosci, 2008, 15(3):286–290. [16] Sietsma MS, Hosman AJ, Verdonschot NJ, et al. Biomechanical evaluation of the vertebral jack tool and the inflatable bone tamp for reduction of osteoporotic spine fractures [J]. Spine, 2009, 34 (18):640-644. [17] Andy L, Terence E, Marc A, et al. The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness [J]. Spine,2009, 34(5):441-446. [18] Kasai Y, Inaba T, Kato T, et al. Biomechanical study of the lumbar spine using a unilateral pedicle screw fixation system [J]. J Clin Neurosci,2010, 17(3): 364-367. [19] Crawford NR, Dofan S, Yüksel KZ, et al. In vitro biomechanical analysis of a new lumbar low-profile locking screw-plate construct versus a standard top-loading cantilevered pedicle screw-rod construct: technical report [J]. Neurosurgery, 2010, 66(2):404-406. [20] Schreiber U, Bence T, Grupp T, et al. Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A biomechanical in vitro investigation [J]. Eur Spine J, 2005, 14(2):197-204. [21] Frank L, Jenni M, Zheng X, et al. Biomechanical comparison of three fixation techniques for unstable thoracolumbar burst fractures [J]. J Neurosurg Spine, 2008, 8(4):341-346. [22] Wang XY, Dai LY, Xu HZ, et al. The load-sharing classification of thoracolumbar fractures [J]. Spine, 2007, 32(11):1214-1219. [23] Panjabi MM, Hoffman H, Kato Y, et al. Superiority of incremental trauma approach in experimental burst fracture studies [J]. Clin Biomech, 2000, 15(2):73-78. [24] Patricia M, Brian P, Glenn R, et al. In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model [J]. J Spinal Disord Tech, 2008, 21(3):216-224. [25] Luo J, Daines L, Charalambous A, et al. Vertebroplasty only small cement volumes are required to normalize stress distributions on the vertebral bodies [J]. Spine, 2009, 34(26):2865-2873. [26] Rüger M, Schmoelz W. Vertebroplasty with high-viscosity polymethylmethacrylate cement facilitates vertebral body restoration in vitro [J]. Spine, 2009,34(24):2619-2625. [27] Michael N, Susan M, Frank M, et al. Altered disc pressure profile after an osteoporotic vertebral fracture is a risk factor for adjacent vertebral body fracture [J]. Eur Spine J, 2008, 17(11):1522-1530. [28] Moon SM, Ingalhalikar A, Highsmith JM, et al. Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model [J]. Spine J, 2009, 9(4):330-335. [29] Mahar A, Kim C, Wedemeyer M, et al. Short-segment fixation of lumbar burst fractures using pedicle fixation at the level of the fracture [J]. Spine, 2007, 32(14):1503-1507.
|