纳米晶重组类人胶原基/聚乳酸复合支架材料的表征及细胞相容性研究

吕玉明, 程立明, 裴国献, 王玉, 崔福斋

中国临床解剖学杂志 ›› 2011, Vol. 29 ›› Issue (5) : 550-556.

中国临床解剖学杂志 ›› 2011, Vol. 29 ›› Issue (5) : 550-556.
实验研究

纳米晶重组类人胶原基/聚乳酸复合支架材料的表征及细胞相容性研究

  • 吕玉明1, 程立明2, 裴国献3, 王 玉4, 崔福斋4
作者信息 +

Characterization and biocompatible evaluation of nHA/RHLC/PLA composite scaffold

  • Lü Yu-ming1, CHENG  Li-ming2, PEI Guo-xian3, WANG Yu4, CUIFu-zhai4
Author information +
文章历史 +

摘要

目的 制备纳米羟基磷灰石/重组类人胶原基/聚乳酸复合支架材料 (nano-hydroxyapatite/ recombinant human- like collagen/polylactic acid,nHA/RHLC/PLA),观察材料的形貌特征,探讨材料对骨髓基质干细胞(BMSCs)增殖、黏附及分化等生物学行为的影响。  方法 制备nHA/RHLC/PLA复合支架材料,应用X 光衍射分析(XRD)、红外光谱分析(FTIR)、ZWICK Z005 测试机对样品的化学成分、机械性能测试和压缩强度进行测试,通过扫描电镜检查等方法观察材料的表征;将犬骨髓基质细胞(BMSCs)接种在支架材料上培养,检测材料-细胞的黏附情况及材料对细胞生长增殖的影响。  结果 nHA/RHLC/PLA复合支架材料压缩强度均大于1MPa,达到了天然松质骨的最低强度。扫描电镜结果显示:支架材料呈三维多孔结构,孔为不规则多边形,孔的走向多样,纵向和横向孔隙互为交通,孔径在几十微米到300微米不等,孔隙率为75%~83%。nHA/RHLC/PLA复合支架材料表面BMSCs的黏附、生长良好;而BMSCs的增殖能力与对照组相比,差异无显著性意义(P>0.05)。  结论 nHA/RHLC/PLA复合支架材料符合组织工程骨支架的力学要求,具有良好的微观结构,无细胞毒性,细胞与支架生物相容性良好。利用重组类人胶原代替动物源性胶原制备纳米晶骨修复材料,规避了动物胶原交叉感染的风险,有望成为一种理想的骨组织工程支架材料。

Abstract

Objective To explore the characteristics and biocompatibility of nano-hydroxyapatite/ recombinant human-like collagen/polylactic acid (nHA/RHLC/PLA ) composite scaffold. Methods The morphologic features of nHA/RHLC/PLA scaffold were observed under scanning electron microscopy.The porosity of the scaffold was determined via isopropyl alcohol displacement method. The canine BMSCs were separated and cultured in vitro. The third passage of cells was seeded into the scaffold for analyzing the adhesion and proliferation ability of BMSCs on scaffold. Results Scan electron microscopy showed that, the surface of scaffold was porous.BMSCs infiltrated into the pores of scaffold, adhered, spread, and proliferated on the surface of scaffold pore within one week. However, we did not detected the significant difference of adhesion and proliferation of BMSCs between nHA/RHLC/PLA scaffold culture and normal culture (P>0.05). Conclusions The nHA/RHLC/PLA composite scaffold has favourable microstructure, which is biocompatible to BMSCs.

关键词

  / 纳米晶 / 干细胞 / 组织工程 / 生物相容性 / 细胞培养

Key words

Nanocomposite / Stem cells / Tissue engineering /   / Biocompatibility / Cell culture

引用本文

导出引用
吕玉明, 程立明, 裴国献, 王玉, 崔福斋. 纳米晶重组类人胶原基/聚乳酸复合支架材料的表征及细胞相容性研究[J]. 中国临床解剖学杂志. 2011, 29(5): 550-556
LV Yu-Meng, CHENG Li-Meng, FEI Guo-Xian, WANG Yu, CUI Fu-Zhai. Characterization and biocompatible evaluation of nHA/RHLC/PLA composite scaffold[J]. Chinese Journal of Clinical Anatomy. 2011, 29(5): 550-556
中图分类号:      R318.08   

参考文献


[1]  Aad G, Abbott B, Abdallah J, et al. Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC
[J]. Phys Rev Lett, 2010,105(16):161801.

[2]  Hutmacher DW. Scaffolds in tissue engineering bone and cartilage
[J]. Biomaterials,2000,21(24):2529-2543.

[3]  Wang Y, Hu F, Wang ZJ, et al. Administration of bone marrow-derived stem cells suppresses cellular necrosis and apoptosis induced by reperfusion of ischaemic kidneys in rats
[J]. Chin Med J (Engl),2008,121(3):268-271.

[4]  Wang Y, Cui FZ, Hu K, et al. Bone regeneration by using scaffold based on mineralized recombinant collagen
[J]. J Biomed Mater Res B Appl Biomater,2008,86(1):29-35.

[5] Wang XJ, Fan DD, Luo YE. Breakthrough model of recombinant human-like collagen in immobilized metal affinity chromatography
[J]. Appl Biochem Biotechnol,2009,158(2):262-276.

[6] Wang W, Lin S, Xiao Y, et al. Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats
[J]. Life Sci,2008,82(3-4):190-204.

[7]  Wang G, Zheng L, Zhao H, et al. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering
[J]. Tissue Eng Part A, 2011, 17(9-10):1341-1319.

[8]  李容林,李春阳,周超美,等.壳聚糖一胶原复合rhBMP-2和bFGF膜引导牙周组织再生的实验研究
[J]. 中国临床解剖学杂志,2007,25(4):430-432.

[9] Wang CL, Miyata T, Weksler B, et al. Collagen-induced platelet aggregation and release. I Effects of side-chain modifications and role of arginyl residues
[J]. Biochim Biophys Acta,1978, 544(3):555-567.

[10]Wang ZN, Xu HM. Relationship between collagen IV expression and biological behavior of gastric cancer
[J]. World J Gastroenterol,2000,6(3):438-439.

[11]Thuaksuban N, Nuntanaranont T, Pattanachot W, et al. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response
[J]. Biomed Mater,2011, 6(1):015009.

[12]Shalumon KT, Anulekha KH, Chennazhi KP, et al. Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering
[J]. Int J Biol Macromol. 2011, 48(4):571-576.

[13] Liao H, Zakhaleva J, Chen W. Cells and tissue interactions with glycated collagen and their relevance to delayed diabetic wound healing
[J]. Biomaterials, 2009,30(9):1689-1696.

[14]张梅霞,靳安民,杨春蓉,等。仿生型B G-COL-HYA-P S复合支架细胞相容性
[J].中国临床解剖学杂志,2006,24(4):433-436.

[15]Liao SS, Cui FZ, Zhang W, et al. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite
[J]. J Biomed Mater Res B Appl Biomater,2004,69(2):158-165.

[16]Du C, Cui FZ, Feng QL, et al. Tissue response to nano-hydroxyapatite/ collagen composite implants in marrow cavity
[J]. J Biomed Mater Res,1998,42(4):540-548.

[17]Patino MG, Neiders ME, Andreana S, et al. Cellular inflammatory response to porcine collagen membranes
[J]. J Periodontal Res,2003,38(5):458-464.

[18] Hao W, Dong J, Jiang M, et al. Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold
[J]. Int Orthop,2010,34(8):1341-1349.

[19]Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology
[J]. J Biomed Mater Res,1999,44(4):446-455.

[20] Vagaska B, Bacakova L, Filova E, et al. Osteogenic cells on bio-inspired materials for bone tissue engineering
[J]. Physiol Res,2010,59(3):309-322.

[21]Lu JX, Flautre B, Anselme K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo
[J]. J Mater Sci Mater Med,1999,10(2):111-120.

[22]Gauthier O, Bouler JM, Aguado E, et al. Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics
[J]. J Mater Sci Mater Med,1999,10(4):199-204.

[23]Gauthier O, Bouler JM, Aguado E, et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth
[J]. Biomaterials,1998,19(1-3):133-139.

[24]Boyan BD, Hummert TW, Dean DD, et al. Role of material surfaces in regulating bone and cartilage cell response
[J]. Biomaterials,1996,17(2):137-146.

[25] Gui C, Hagenbuch B. Cloning/characterization of the canine organic anion transporting polypeptide 1b4 (Oatp1b4) and classification of the canine OATP/SLCO members
[J]. Comp Biochem Physiol C Toxicol Pharmacol,2010,151(3):393-399.

[26] Sadiq AA, Patel MR, Jacobson BA, et al. Anti-proliferative effects of simocyclinone D8 (SD8), a novel catalytic inhibitor of topoisomerase II
[J]. Invest New Drugs,2010,28(1):20-25.

基金

国家自然科学基金(30772194)


Accesses

Citation

Detail

段落导航
相关文章

/