17β-雌二醇对脂肪细胞内脂滴增殖的抑制作用及其机制研究
Negative effect of 17β-E2 on lipid droplets through CIDEc and Plin1 in primary human adipocyte
目的 探讨雌激素对hASCs成脂分化过程中脂滴相关特异基因DNA断裂因子相似蛋白C(The cell death-inducing DNA fragmentation 45-like effector, CIDEc)、脂滴包被蛋白(Perilipin1, Plin1)mRNA表达的影响。 方法 对3例患者行脂肪抽吸术,并进行hASCs培养及传代,鉴定表面标志物;经典鸡尾酒法诱导其成脂,不同浓度(10-8、10-7、10-6 mol/L)17β-雌二醇(17β-E2)作用于细胞,分别于24 h、4、7、11d收获细胞,用RT-PCR检测CIDEc、Plin1 mRNA表达情况。 结果 各组细胞经药物作用后,脂肪细胞中CIDEc及Plin1 mRNA的表达水平随着17β-E2浓度的升高而下降;而随着作用时间的延长,CIDEc及Plin1 mRNA表达水平分别于7 d和4 d达到高峰期,其后逐渐下降。当17β-E2浓度为10-6 mol/L时,细胞中CIDEc及Plin1 mRNA的表达水平最低,差异有统计学意义(P<0.01);而加入雌激素受体阻滞剂ICI182780的一组细胞,雌激素对CIDEc 及Plin1 mRNA表达的抑制作用明显减弱。 结论 17β-E2能够显著降低脂肪细胞分化过程中CIDEc及Plin1的mRNA表达,并可能通过这一途径抑制脂肪细胞内脂滴的增殖。
Objective To evaluate the effect of different concentrations of 17β-estradiol(17β-E2)on adipocytes lipid droplet growth and CIDEc, Plin1 mRNA expression in vitro. Methods Human primary adipose tissue-derived stem cells(hASCs) were isolated from liposuction aspirates of three patients and cultured, passaged and identified the cell surface markers. hASCs were induced differentiated at 0 mol/L(17β-E2 free DMEM/F12),10-8 mol/L, 10-7 mol/L and 10-6 mol/L 17β-E2 and ICI182780 was added to culture human primary preadipocytes. The expression of CIDEc and Plin1 mRNA was detected by RT-PCR after staining with oil red O. Result Different concentrations of 17β-E2 suppressed CIDEc mRNA and Plin1 mRNA expression in human primary preadipocytes. The expression peak of CIDEc and Plin1 mRNA occurred at 7 and 4 days. At 10-6 mo/L 17β-E2,the expression of CIDEc and Plin1 mRNA were the lowest. Andwith the increase in 17β-E2 concentration,the expression of CIDEc and Plin1 mRNA was in decline. Conclusion 17β-E2 reduces CIDEc and Plin1 mRNA expression in adipocytes,in which inhibited CIDEc and Plin1 expression may contribute to the negative effect of 17β-E2 on lipid droplets.
17β-雌二醇 / 脂滴 / 脂肪细胞 / 成脂分化 / CIDEc / Perilipin1
17β-E2 / Lipid droplet / Primary human adipocyte / Adiposed differentiation / CIDEc / Perilipin1
[1] Heine PA, Taylor JA, Iwamoto GA, et al. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice[J]. Proc Natl Acad Sci U S A, 2000, 97(23):12729-12734.
[2] Baglietto L, English DR, Hopper JL, et al. Circulating steroid hormone concentrations in postmenopausal women in relation to body size and composition[J]. Breast Cancer Res Treat, 2009, 115(1):171-179.
[3] Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots[J]. Acta Physiol (Oxf), 2012, 205(2):194-208.
[4] Mak HY. Lipid droplets as fat storage organelles in caenorhabditis elegans: thematic review series: lipid droplet synthesis and metabolism: from yeast to man[J]. J Lipid Res, 2012, 53(1):28-33.
[5] Saxena N, Ansari KM, Kumar R, et al. Role of mitogen activated protein kinases in skin tumorigenicity of patulin[J]. Toxicol Appl Pharmacol, 2011, 257(2):264-271.
[6] Sun Z, Gong J, Wu H, et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes[J]. Nat Commun, 2013,4:1594.
[7] Xu L, Zhou L, Li P. CIDE proteins and lipid metabolism[J]. Arterioscler Thromb Vasc Biol, 2012, 32(5):1094-1098.
[8] Bickel PE, Tansey JT, Welte MA. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores[J]. Biochim Biophys Acta, 2009, 1791(6):419-440.
/
〈 |
|
〉 |