[1] Derda R, Laromaine A, Mammoto A, et al. Paper-supported 3D cell culture for tissue-based bioassays[J]. Proc Natl Acad Sci U S A, 2009,106(44):18457-18462.
[2] 黄强,裴福兴,田家亮,等. 掺锶硫酸钙复合骨修复材料体内组织相容性研究[J]. 生物骨科材料与临床研究, 2009, 6(3):18-22.
[3] Lichte P, Pape H C, Pufe T, et al. Scaffolds for bone healing: concepts, materials and evidence[J]. Injury, 2011, 42(6): 569-573.
[4] Linde A, Hedner E. Recombinant bone morphogenetic protein-2 enhances bone healing, guided by osteopromotive e-PTFE membranes: an experimental study in rats[J]. Calcif Tissue Int,1995, 56(6): 549-553.
[5] Boyan BD, Hummert TW, Dean DD, et al. Role of material surfaces in regulating bone and cartilage cell response[J]. Biomaterials, 1996, 17(2):137-146.
[6] Reddi A H. Bone morphogenetic proteins and skeletal development: the kidney-bone connection[J]. Pediatr Nephrol (Berlin, Germany), 2000,14(7):598-601.
[7] Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis[J]. J Biochem,1997,121(2): 317-324.
[8] Holmes R E. Bone regeneration within a coralline hydroxyapatite implant[J]. Plast Reconstr Surg, 1979, 63(5):626-633.
[9] Sandhu H S, Kanim L E, Toth J M, et al. Experimental spinal fusion with recombinant human bone morphogenetic protein-2 without decortication of osseous elements[J]. Spine,1997, 22(11):1171-1180.
[10] Williams D F. On the mechanisms of biocompatibility[J]. Biomaterials,2008,29(20):2941-2953.
[11] Kulkarni R K, Moore E G, Hegyeli A F, et al. Biodegradable poly(lactic acid) polymers[J]. J Biomed Mater Res,1971, 5(3):169-181.
[12] 刘忠军. 金属3D打印骨科内植物的应用现状与发展趋势浅析[J]. 骨科临床与研究杂志, 2017, 2 (2):65-67.
[13] Xue W, Krishna B V, Bandyopadhyay A, et al. Processing and biocompatibility evaluation of laser processed porous titanium[J]. Acta Biomater, 2007, 3(6):1007-1018.
[14] Balla V K, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties[J]. Acta Biomater, 2010, 6(8):3349-3359.
[15] Rezwan K, Chen Q Z, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(18):3413-3431.
[16] Teixeira S, Fernandes H, Leusink A, et al. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering[J]. J Biomed Mater Res. Part A, 2010, 93(2):567-575.
[17] Woodard J R, Hilldore A J, Lan S K, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity[J]. Biomaterials, 2007, 28(1): 45-54.
[18] Tarafder S, Balla V K, Davies N M, et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J]. J Tissue Eng Regen M, 2013, 7(8): 631-641.
[19] Yan J, Li J, Runge M B, et al. Cross-linking characteristics and mechanical properties of an injectable biomaterial composed of polypropylene fumarate and polycaprolactone co-polymer[J]. J Biomater Sci Polym Ed, 2011, 22(4-6): 489-504.
[20] 党莹,李月,李瑞玉,等. 骨组织工程支架材料在骨缺损修复及3D打印技术中的应用[J]. 中国组织工程研究, 2017, 21(14):2266-2273.
[21] Wan W, Zhang S, Ge L, et al. Layer-by-layer paper-stacking nanofibrous membranes to deliver adipose-derived stem cells for bone regeneration[J]. Int J Nanomedicine, 2015,10:1273-1290.
[22] Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(7):964-973.
[23] San Miguel B, Kriauciunas R, Tosatti S, et al. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds[J]. J Biomed Mater Res. Part A, 2010, 94(4):1023-1033.
[24] Wu C, Zhou Y, Fan W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering[J]. Biomaterials, 2012, 33(7): 2076-2085.
[25] 王晓清. 掺硼45S5生物玻璃强化镁黄长石陶瓷的3D打印支架制备及其性能研究[D]. 2016.
[26] Xue W, Bandyopadhyay A, Bose S. Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering[J]. J Biomed Mater Res. Part B, Applied Biomaterials, 2009, 91(2):831-838.
[27] Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering[J]. Bone, 2010, 46(2):386-395.
[28] Roohani-Esfahani S, Nouri-Khorasani S, Lu Z, et al. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites[J]. Biomaterials, 2010, 31(21):5498-5509.
[29] Laschke MW, Strohe A, Menger MD, et al. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering[J]. Acta Biomater, 2010, 6(6):2020-2027.
[30] Banerjee SS, Tarafder S, Davies NM, et al. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics[J]. Acta Biomater, 2010, 6(10):4167-4174.
[31] Saunders RE, Gough JE, Derby B. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing[J]. Biomaterials, 2008, 29(2):193-203.
[32] Jana S, Lerman A. Bioprinting a cardiac valve[J]. Biotechnol Adv, 2015, 33(8):1503-1521.
[33] Cui X, Dean D, Ruggeri ZM, et al. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells[J]. Biotechnol Bioeng, 2010,106(6):963-969.
[34] Catros S, Fricain J, Guillotin B, et al. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite[Z]. 2011:3, 25001.
[35] Trombetta R, Inzana J A, Schwarz E M, et al. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery[J]. Ann Biomed Eng, 2017, 45(1):23-44.
[36]Serra P, Duocastella M, Fernández-Pradas JM, et al. Liquids microprinting through laser-induced forward transfer[J]. Appl Surf Sci, 2009, 255(10):5342-5345.
[37] Ali M, Pages E, Ducom A, et al. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution[J]. Biofabrication, 2014, 6(4):45001.
[38] Patrascioiu A, Fernández-Pradas JM, Palla-Papavlu A, et al. Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection[J]. Microfluid Nanofluid, 2014, 16(1-2):55-63.
[39] Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials, 2010, 31(24):6121-6130.
[40] 陈梦仪. 3D打印技术、应用及发展趋势[J]. 工业技术创新,2016, 3(3):581-584.
[41] Wang Z, Abdulla R, Parker B, et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks[J]. Biofabrication, 2015, 7(4):45009. |