中国临床解剖学杂志 ›› 2021, Vol. 39 ›› Issue (5): 557-562.doi: 10.13418/j.issn.1001-165x.2021.05.011
朱渝1, 魏静2, 吴鹏程1, 袁潇1, 周振华3, 李敏1
收稿日期:
2021-01-14
出版日期:
2021-09-25
发布日期:
2021-09-29
通讯作者:
李敏,副主任医师,E-mail:2568573271@qq.com
作者简介:
朱渝(1972-),男,重庆人,硕士,副主任医师,E-mail:HPeveryDay2020@163.com
基金资助:
Zhu Yu 1, Wei Jing 2, Wu Pengcheng 1, Yuan Xiao 1, Zhou Zhenhua3, Li Min 1
Received:
2021-01-14
Online:
2021-09-25
Published:
2021-09-29
摘要: 目的 探讨山茛菪碱在缺氧缺血性脑损伤幼龄鼠脑组织形态和功能损伤中的调控作用。 方法 50只幼龄大鼠均分为健康对照组、模型组、模型加药组(尾静脉注射山莨菪碱2.5、5、10 mg/kg)共5组。脑组织干湿重法检测脑指数和脑含水率,HE染色观察脑组织病理损伤,TUNEL染色观察脑海马神经元周围组织细胞凋亡情况,Western blot检测脑组织中Bax/Bcl-2、caspase-9、caspase-3、BDNF和NGF蛋白表达水平,RT-PCR检测BDNF和NGF mRNA表达水平,试剂盒检测SOD、MDA和GSH-Px含量。 结果 与健康对照组比较,模型组幼龄鼠脑组织形态和神经功能损伤严重(P<0.05)。与模型组比较,5 mg/kg和10 mg/kg山茛菪碱组脑指数和脑含水率降低(P<0.05),脑组织病理损伤好转,脑海马神经元周围组织细胞凋亡减少,Bax/Bcl-2、caspase-9、caspase-3表达水平降低(P<0.05),BDNF和NGF表达水平增高(P<0.05),MDA含量降低,SOD和GSH-Px含量增高(P<0.05)。 结论 山茛菪碱能够缓解缺氧缺血性脑损伤幼龄鼠脑组织形态和功能损伤。
中图分类号:
朱渝, 魏静, 吴鹏程, 袁潇, 周振华, 李敏. 山莨菪碱缓解幼龄鼠缺氧缺血性脑组织形态和功能损伤[J]. 中国临床解剖学杂志, 2021, 39(5): 557-562.
Zhu Yu , Wei Jing , Wu Pengcheng , Yuan Xiao , Zhou Zhenhua, Li Min . Anisodamine relieves hypoxic-ischemic brain damage and neurologic impairment in young rats[J]. Chinese Journal of Clinical Anatomy, 2021, 39(5): 557-562.
[1] | 薛磊, 沈冰冰, 王丽娜, 等. 黄芩苷对新生大鼠缺氧缺血性脑损伤保护作用的实验研究[J]. 解放军医药杂志, 2019, 31(10): 6-9. DOI: 10.3969/j.issn.2095-140X.2019.10.002. |
[2] | Hamdy N, Eide S, Sun HS, et al. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents[J]. Exp Neurol, 2020, 334: 113457. DOI: 10.1016/j.expneurol.2020.113457. |
[3] | Bustelo M, Barkhuizen M, van den Hove DLA, et al. Clinical implications of epigenetic dysregulation in perinatal hypoxic-ischemic brain damage[J]. Front Neurol, 2020, 11: 483. DOI: 10.3389/fneur. 2020. 00483. |
[4] | Go H, Saito Y, Maeda H, et al. Serum cytokine profiling in neonates with hypoxic ischemic encephalopathy[J]. J Neonatal Perinatal Med, 2021, 14(2): 177-182. DOI: 10.3233/NPM-200431. |
[5] | Cho KH, Davidson JO, Dean JM, et al. Cooling and immunomodulation for treating hypoxic-ischemic brain injury[J]. Pediatr Int, 2020, 62(7): 770-778. DOI: 10.1111/ped.14215. |
[6] | Li Z, Xu CY, Tao YZ, et al. Anisodamine alleviates lipopolysaccharide-induced pancreatic acinar cell injury through NLRP3 inflammasome and NF-κB signaling pathway[J]. J Recept Signal Transduct Res, 2020, 40(1): 58-66. DOI: 10.1080/10799893.2020.1713808. |
[7] | Li YF, Xu BY, An R, et al. Protective effect of anisodamine in rats with glycerol-induced acute kidney injury[J]. BMC Nephrol, 2019, 20(1): 223. DOI: 10.1186/s12882-019-1394-y. |
[8] | Xu ZW, Wang T, Chen L, et al. Treatment of dilated cardiomyopathy caused by coronary microvascular dysfunction with anisodamine: a report of 5 cases[J]. J Tradit Chin Med, 2020, 40(2): 340-342. PMID: 32242401. |
[9] | Liu C, Shen FM, Le YY, et al. Antishock effect of anisodamine involves a novel pathway for activating alpha7 nicotinic acetylcholine receptor[J]. Crit Care Med, 2009, 37(2): 634-641. DOI: 10.1097/CCM.0b013e31819598f5. |
[10] | Li XL, Hong M. Aqueous extract of Dendrobium officinale confers neuroprotection against hypoxic-ischemic brain damage in neonatal rats[J]. Kaohsiung J Med Sci, 2020, 36(1): 43-53. DOI: 10.1002/kjm2.12139. |
[11] | Zhao Q, Cheng X, Wang X, et al. Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats[J]. J Ethnopharmacol, 2016, 192: 140-147. DOI: 10.1016/j.jep.2016.07.016. |
[12] | Fang H, Li HF, Yang M, et al. microRNA-128 enhances neuroprotective effects of dexmedetomidine on neonatal mice with hypoxic-ischemic brain damage by targeting WNT1[J]. Biomed Pharmacother, 2019, 113: 108671. DOI: 10.1016/j.biopha.2019.108671. |
[13] | Hou X, Yuan Z, Wang X, et al. Peptidome analysis of cerebrospinal fluid in neonates with hypoxic-ischemic brain damage[J]. Mol Brain, 2020, 13(1): 133. DOI: 10.1186/s13041-020-00671-9. |
[14] | 杜逸亭, 高淑强, 李彪, 等. 高压氧联合GM-1治疗对新生儿缺血缺氧性脑病患儿血清Bcl-2、NSE和NF-κB的影响[J]. 解放军医药杂志, 2017, 29(12): 61-63. DOI: 10.3969/j.issn.2095-140X.2017.12.017. |
[15] | 闫继宏, 王勇. 促红细胞生成素治疗新生儿缺氧缺血性脑病的研究进展[J]. 临床误诊误治, 2017, 30(11): 112-116. DOI: 10.3969/j.issn.1002-3429.2017.11.033. |
[16] | Dumbuya JS, Chen L, Shu SY, et al. G-CSF attenuates neuroinflammation and neuronal apoptosis via the mTOR/p70SK6 signaling pathway in neonatal Hypoxia-Ischemia rat model[J]. Brain Res, 2020, 1739: 146817. DOI: 10.1016/j. brainres.2020.146817. |
[17] | 邱玲, 范方毅, 邓锐, 等. miR-181a-5p对T淋巴细胞白血病Jurkat细胞增殖和凋亡的影响[J]. 临床误诊误治, 2019, 32(3): 40-45. DOI: 10.3969/j.issn.1002-3429.2019.03.010. |
[18] | Zhang C, Ni S, Yang ZC, et al. Oxidative stress induces chondrocyte apoptosis through caspase-dependent and caspase-independent mitochondrial pathways and the antioxidant mechanism of angelica sinensis polysaccharide[J]. Oxid Med Cell Longev, 2020: 3240820. DOI: 10.1155/2020/3240820. |
[19] | Jaldeep L, Lipi B, Prakash P. Potential role of NGF, BDNF and their receptors in oligodendrocytes differentiation from neural stem cell an in vitro study[J]. Cell Biol Int, 2021, 45(2): 432-446. DOI: 10.1002/cbin.11500. |
[20] | Wang XX, Cong PX, Wang XC, et al. Maternal diet with sea urchin gangliosides promotes neurodevelopment of young offspring via enhancing NGF and BDNF expression[J]. Food Funct, 2020, 11(11): 9912-9923. DOI: 10.1039/d0fo01605e. |
[21] | Kong ZL, Hsu YT, Johnson A, et al. Protective effects of Antrodia camphorata extract against hypoxic cell injury and ischemic stroke brain damage[J]. Phytother Res, 2021, 35(3): 1609-1620. DOI: 10.1002/ptr.6928. |
[22] | Hu X, Li SR, Doycheva DM, et al. Rh-CSF1 Attenuates oxidative stress and neuronal apoptosis via the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of neonatal HIE[J]. Oxid Med Cell Longev, 2020, 2020: 6801587. DOI: 10.1155/2020/6801587. |
[23] | Le K, Song ZP, Deng J, et al. Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation[J]. Inflamm Res, 2020, 69(12): 1201-1213. DOI: 10.1007/s00011-020-01402-5. |
[1] | 江剑宏, 段仁鹏, 李晓锋. 国人胆道三维重建解剖变异应用研究[J]. 中国临床解剖学杂志, 2024, 42(1): 1-4. |
[2] | 郭红志, 王瑜, 张加琪, 梁海彬, 马梓玮, 冯伟, 吴忧, 司子燚. 血管铸型结合CT三维模型评估先兆子痫胎盘血管结构[J]. 中国临床解剖学杂志, 2024, 42(1): 5-10. |
[3] | 李佳伟, 张静, 李灿然, 兰文杰, 籍庆余, 郭志勇, 张云凤, 刘启, 陈清威, 李筱贺. 蒙古族人群股骨近端解剖参数X线测量[J]. 中国临床解剖学杂志, 2024, 42(1): 11-16. |
[4] | 李琨, 张燕, 郭冉, 郝咪咪, 吴轩宇, 徐艺芳, 王超群, 马文童, 张灵淇, 杨宏宇, 李志军, 张少杰, 王星. 儿童及青少年枕颈角与后枕颈角数字化测量及其临床意义[J]. 中国临床解剖学杂志, 2024, 42(1): 17-20. |
[5] | 王兴航, 丁佳媛, 李放, 包翠芬, 阎丽菁. 人参皂苷Rg1通过抑制NLRP3炎症小体途径减轻氧糖剥夺/复供后小胶质细胞炎症反应[J]. 中国临床解剖学杂志, 2024, 42(1): 33-41. |
[6] | 吴研飞, 马剑雄, 卢斌, 王颖, 柏豪豪, 靳洪震, 马信龙. CT后处理技术重建CT值与终板抗压强度的相关性研究[J]. 中国临床解剖学杂志, 2024, 42(1): 71-76. |
[7] | 庄万强, 唐毅, 骆勇刚, 张辉. 关节镜联合胫骨高位截骨术对髌骨位置及髌股关节功能影响的早中期回顾性研究[J]. 中国临床解剖学杂志, 2024, 42(1): 77-82. |
[8] | 罗鹰, 窦伟誉, 吴小杭, 陈璟昆, 彭昌贵, 潘剑英 . 微创海马钢板内固定治疗跟骨骨折并发症的影响因素[J]. 中国临床解剖学杂志, 2024, 42(1): 83-88. |
[9] | 陈俊臣, 曹文英, 罗燕君, 何婉仪, 朱真真, 彭志强. 抽吸取栓术与抽吸结合支架取栓术治疗脑前循环栓塞疗效比较[J]. 中国临床解剖学杂志, 2024, 42(1): 89-93. |
[10] | 胡硕红, 郑学彬, 李富杰, 王鸿. 种植基台材料对种植体周围软硬组织影响的前瞻性临床研究[J]. 中国临床解剖学杂志, 2024, 42(1): 94-98. |
[11] | 林杰, 金甬, 庞清江. 胃肠道菌群与骨质疏松症关系的研究进展[J]. 中国临床解剖学杂志, 2024, 42(1): 109-111. |
[12] | 张悦, 蔡兴博, 张必欢, 王斌, 徐永清. 全腕关节置换术后腕关节生物力学研究进展[J]. 中国临床解剖学杂志, 2024, 42(1): 112-114. |
[13] | 陈仁, 杨胜波. 咬肌的解剖与临床应用研究进展[J]. 中国临床解剖学杂志, 2024, 42(1): 115-117. |
[14] | 徐浩铜, 徐万宇, 吴毅, 何明静, 雷秀兵, 田伏洲. 慢性胰腺炎脾门假性囊肿分类及其与SPH关系的影像学研究[J]. 中国临床解剖学杂志, 2023, 41(6): 652-656. |
[15] | 刘展, 陶胜忠, 卢慧鹏, 王在斌, 睢豫擘, 牛光明. MRI三维观察血管压迫神经根在原发性三叉神经痛患者和非疼痛人群中差异[J]. 中国临床解剖学杂志, 2023, 41(6): 667-674. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|