目的 研究丹参酮IIA(tanshinone ⅡA, Tan ⅡA)对CCl4诱导小鼠急性肝损伤的抗氧化、保护作用及其可能的作用机制。 方法 将C57BL/6J小鼠随机分成正常组、CCl4组以及Tan ⅡA保护组(Tan ⅡA 20 mg/kg+CCl4),每组10只。腹腔注射CCl4构建小鼠急性肝损伤模型。计算各组小鼠的肝脏指数,检测血清AST和ALT活性,测定肝组织SOD活性及GSH、MDA含量,HE染色观察肝组织病理变化,免疫组织化学法和Western blot检测肝组织PI3K、p-PI3K、Akt、p-Akt、Nrf2和HO-1蛋白表达水平。 结果 与CCl4组相比,Tan ⅡA保护组肝脏指数显著下降(P<0.01),血清AST(P<0.01)和ALT活性降低(P<0.05),肝组织SOD活性(P<0.01)及GSH含量升高(P<0.05),MDA含量降低(P<0.05),肝组织病理变化得到显著改善。同时,Tan ⅡA使肝组织p-PI3K和p-Akt表达水平明显升高(P<0.01),显著诱导Nrf2转位入核(P<0.01),促使其下游靶蛋白HO-1表达水平明显升高(P<0.01)。 结论 Tan ⅡA能够显著改善CCl4诱导的急性肝损伤,其机制可能与PI3K/Akt/Nrf2/HO-1信号通路有关。
Abstract
Objective To investigate the antioxidant and protective effect of tanshinone IIA (Tan ⅡA) on CCl4-induced acute liver injury in mice and its possible mechanism. Methods C57BL/6J mice were randomly divided into a control group, a CCl4 group and a Tan ⅡA protective group (Tan ⅡA 20 mg/kg+CCl4), with 10 mice in each group. Acute liver injury model was induced by intraperitoneal injection of CCl4 in mice. The liver indices were calculated, the activities of serum AST and ALT were detected, the activity of SOD and the contents of GSH and MDA in liver tissue were measured, and the pathological changes of liver tissue were observed by HE staining. The expression levels of PI3K, p-PI3K, Akt, p-Akt, Nrf2 and HO-1 proteins in liver tissue were detected by immunohistochemistry and Western blot. Results Compared with the CCl4 group, in the Tan ⅡA protective group, the liver indices was significantly decreased (P<0.01), the activities of serum AST (P<0.01) and ALT (P<0.05) was reduced, the activity of SOD (P<0.01) and the content of GSH (P<0.05) were increased while decreasing the content of MDA (P<0.05) in liver tissue, and the pathological changes of liver tissue was significantly improved. In addition, Tan ⅡA could significantly increase the expression levels of p-PI3K and p-Akt (P<0.01) in liver tissue, while significantly inducing Nrf2 translocation into nucleus (P<0.01), which significantly increased the expression level of its downstream target protein HO-1 (P<0.01). Conclusions Tan ⅡA can significantly ameliorate CCl4-induced acute liver injury. Its mechanism may be related to PI3K/Akt/Nrf2/HO-1 signaling pathway.
关键词
  /
丹参酮IIA /
  /
  /
急性肝损伤 /
  /
  /
PI3K/Akt/Nrf2/HO-1通路 /
  /
  /
抗氧化
Key words
Tanshinone ⅡA /
  /
  /
Acute liver injury /
  /
  /
PI3K/Akt/Nrf2/HO-1 pathway /
  /
  /
Antioxidation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ammar H, Fontana RJ. The diagnosis and management of idiosyncratic drug-induced liver injury[J]. Liver Int, 2019, 39(1): 31-41. DOI: 10.1111/liv.13931.
[2] Al-Harbi NO, Imam F, Naddem A, et al. Carbon tetrachloride-induced hepatotoxicity in rat is reversed by treatment with riboflavin[J]. Int Immunopharmacol, 2014, 21(2):383-388. DOI: 10.1016/j.intimp. 2014. 05.014.
[3] 岳淑雯, 陈真. 急性肝损伤模型及信号通路研究进展[J]. 药学研究, 2019, 38(1): 49-52. DOI: 10.13506/j.cnki.jpr.2019.01.013.
[4] Wu CT, Deng JS, Huang WC, et al. Salvianolic acid C against acetaminophen-induced acute liver injury by attenuating inflammation, oxidative stress, and apoptosis through inhibition of the Keap1/Nrf2/HO-1 signaling[J]. Oxid Med Cell Longev, 2019, 2019: 1-13. DOI: 10.1155/2019/9056845.
[5] Zhang X, Kuang G, Wan J, et al. Salidroside protects mice against CCl4-induced acute liver injury via down-regulating CYP2E1 expression and inhibiting NLRP3 inflammasome activation[J]. Int Immunopharmacol, 2020, 85(6): 106662. DOI: 10.1016/j.intimp.2020.106662.
[6] 谢一潋, 杨乃彬, 王丽萍, 等. 姜黄素通过激活肝细胞自噬减轻脂多糖/D-氨基半乳糖诱导的大鼠急性肝损伤[J]. 中国病理生理杂志, 2020, 36(5): 860-864. DOI: 10.3969/j.issn.1000-4718.2020.05.013.
[7] Liu Y, Wen P, Zhang X, et al. Breviscapine ameliorates CCl4-induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation[J]. Int J Mol Med, 2018, 42(2):755-768. DOI: 10.3892/ijmm.2018.3651.
[8] 关翠雯, 金晶, 李佳, 等. 丹参酮IIA激活Nrf2/ARE通路保护雷公藤甲素所致急性肝损伤[J]. 药学学报, 2013, 48(9): 1397-1402. DOI: 10.16438/j.0513-4870.2013.09.009.
[9] Al-Dossari MH, Fadda LM, Attia HA, et al. Curcumin and selenium prevent lipopolysacch-aride/diclofenac-induced liver injury by suppressing inflammation and oxidative stress[J]. Biol Trace Elem Res, 2020, 196(1): 173-183. DOI: 10.1007/s12011-019-01910-4.
[10] Weber LWD, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model[J]. Crit Rev Toxicol, 2003, 33(2): 105-136. DOI: 10.1080/713611034.
[11] Ding C, Zhao Y, Chen X, et al. Taxifolin, a novel food, attenuates acute alcohol-induced liver injury in mice through regulating the NF-κB-mediated inflammation and PI3K/Akt signalling pathways[J]. Pharm Biol, 2021, 59(1): 868-879. DOI: 10.1080/13880209.2021.1942504.
[12]王治博, 宋顺宗, 张子波. 黑米花色苷通过激活Nrf2/HO-1信号通路保护四氯化碳所致急性肝损伤的机制[J]. 时珍国医国药, 2019, 30(05): 1097-1100. DOI: 10.3969/j.issn.1008-0805.2019.05.022.
[13]Rabie MA, Zaki HF, Sayed HM. Telluric acid ameliorates hepatic ischemia reperfusion-induced injury in rats: Involvement of TLR4, Nrf2, and PI3K/Akt signaling pathways[J]. Biochem Pharmacol, 2019, 168: 404-411. DOI: 10.1016/j.bcp.2019.08.001.
[14] Jin Y, Tao X, Shi Y, et al. Salvianolic acid B exerts a protective effect in acute liver injury by regulating the Nrf2/HO-1 signaling pathway[J]. Can J Physiol Pharmacol, 2020, 98(3): 162-168. DOI: 10.1139/cjpp-2019-0349.
[15] Guo F, Zhuang X, Han M, et al. Polysaccharides from enteromorpha prolifera protect against carbon tetrachloride-induced acute liver injury in mice via activation of Nrf2/HO-1 signaling, and suppression of oxidative stress, inflammation and apoptosis[J]. Food Funct, 2020, 11(5): 4485-4498. DOI: 10.1039/d0fo00575d.
[16]Li J, Wang T, Liu P, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD[J]. Food Funct, 2021, 12(9): 3898-3918. DOI: 10.1039/d0fo02736g.
[17]Lee C, Bak J, Yoon S, et al. Protective effect of oligonol on dimethylnitrosamine-induced liver fibrosis in rats via the JNK/NF-κB and PI3K/Akt/Nrf2 signaling pathways[J]. Antioxidants (Basel), 2021, 10(3): 366. DOI: 10.3390/antiox10030366.
基金
国家自然科学基金面上项目(31371090);湖北省卫生健康科研基金(WJ2021M217);江汉大学2022年度大学生科研重点项目(2022zd053;2022zd059)