中国临床解剖学杂志 ›› 2023, Vol. 41 ›› Issue (5): 608-613.doi: 10.13418/j.issn.1001-165x.2023.5.19

• 临床研究 • 上一篇    下一篇

基于影像组学不同插值预测脑转移瘤EGFR和HER2表达状态:一项双中心研究

李嫣然1,    王俭1,    徐彩霞2,    靳勇3*   

  1. 1.新疆医科大学第一附属医院影像中心,  乌鲁木齐   830011;    2.长治医学院药学系,  山西   长治    046000;
    3.长治市人民医院影像科,  山西  长治     046000
  • 收稿日期:2022-06-10 出版日期:2023-09-25 发布日期:2023-10-17
  • 通讯作者: 靳勇,副主任医师,E-mail:350252832@qq.com
  • 作者简介:李嫣然(1996-),女,博士,研究方向:神经影像学,E-mail:13632325045@163.com
  • 基金资助:
    山西省2020年度“四个一批”科技兴医创新计划重点专项(2020XM38)

Prediction of EGFR and HER2 expression in brain metastases based on different radiomics interpolator: a two-center study

Li Yanran 1, Wang Jian 1, Xu Caixia 2, Jin Yong 3*   

  1. 1. Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Province, China;2. Department of Pharmacy, Changzhi Medical College, Changzhi 046000, Shanxi Province, China;3. Department of Radiology, Changzhi People’s Hospital, Changzhi 046000, Shanxi Province, China
  • Received:2022-06-10 Online:2023-09-25 Published:2023-10-17

摘要: 目的 基于影像组学的不同插值预测脑转移瘤表皮生长因子受体(epidermal growth factor receptor,EGFR)和表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)表达状态,并探索预测效果最佳的插值方法。  方法 回顾来自两个机构共100例腺癌脑转移患者资料(56例患者基因表达为突变型EGFR或HER2阳性,44例患者基因表达为野生型EGFR或HER2阴性),在T1WI增强序列选择sitkNearestNeighbor,sitkLinear和sitkBSplines 3种插值分别提取1409个特征,将患者按7:3随机分为训练集和测试集,使用最小绝对收缩选择算子(LASSO)选择信息性特征,支持向量机(support vector machine,SVM)构建诊断模型,训练集用于模型训练,独立测试集评估模型的预测性能,ROC曲线计算模型的准确率、敏感度和特异度,ROC曲线下面积(area under curve,AUC)评估模型的预测性能。  结果 基于sitkBSplines插值选定的19个影像组学特征建立的模型显示良好的预测能力,在训练集中,模型的AUC为0.99,分类准确率为0.95,敏感度为0.92,特异度为0.97;在独立测试集中,AUC为0.86,灵敏度0.82,特异度0.78,准确率0.8。sitkBSplines在中心1及中心2的建模中均表现出高于其他插值的鉴别性能。而基于sitkLinear选定的9个影像组学特征建立的模型在训练集和独立测试集的AUC分别为0.74和0.53。  结论 MRI影像组学模型对预测腺癌脑转移瘤中EGFR突变/HER2状态具有一定应用价值,其中基于sitkBSplines插值提取的影像组学特征预测效能最优。

关键词: 脑转移瘤,  影像组学,  EGFR,  HER2

Abstract: Objective    To predict epidermal growth factor receptor (EGFR) mutation status and human epidermal growth factor receptor 2 (HER2) expression status of brain metastasis based on different radiomics interpolator and to explore the optimal interpolator for prediction.    Methods   Data from 100 patients with brain metastasis from adenocarcinoma (56 with mutant EGFR/HER2+, 44 with wild-type EGFR/HER2-) from 2 institutions were retrospectively reviewed and analyzed. Contrast-enhanced T1-weighted imaging (T1-CE) sequence was selected for radiomics features extraction by using 3 different interpolators (sitkNearestNeighbor, sitkLinear and sitkBSplines). A total of 1409 radiomics features were extracted from each MR interpolator. The patients were randomly divided into training coherent and independent testing coherent according to 7:3. The least absolute shrinkage selection operator (LASSO) was used to select informative features, a radiomics signature was built with the support vector machine (SVM) model of the training cohort, and the radiomics signature performance was evaluated by using an independent testing data set. The accuracy, sensitivity and specificity of the model was calculated by the ROC curve.  The predictive performance of the model was assessed by the ROC area under curve (AUC).   Results   Nineteen selected radiomics features based on sitkBSplines interpolator showed good discrimination in both the training and independent test cohorts. The radiomics signature yielded an AUC of 0.99, a classification accuracy of 0.95, sensitivity of 0.92, and specificity of 0.97 in the training cohort, and an AUC of 0.86, a classification accuracy of 0.8, sensitivity of 0.82, and specificity of 0.78 in the independent testing data set. SitkBSplines showed better discrimination performance than other interpolations in both Center 1 and Center 2 modeling. Nine selected radiomics signature features based on sitkLinear interpolator yielded an AUC of 0.74 in training cohort and an AUC of 0.53 in the independent testing cohort.   Conclusions   Radiomics signature model has certain application value in predicting EGFR mutation /HER2 status in adenocarcinoma brain metastases, among which radiomics features based on sitkBSplines interpolation is the most effective in discrimination performance. 

Key words: Brain metastasis; ,  , Radiomics; ,  , EGFR; ,  , HER2

中图分类号: