[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660.
[2] Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis[J]. J Bone Miner Res, 2018, 33(12): 2099-2113. DOI:10.1002/jbmr.3618.
[3] Shupp AB, Kolb AD, Mukhopadhyay D, et al. Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts[J]. Cancers, 2018, 10(6): 182. DOI:10.3390/cancers10060182.
[4] Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world[J]. Biomed Pharmacother, 2018, 97: 1521-1537. DOI:10.1016/j.biopha.2017.11.026.
[5] Raj S, Khurana S, Choudhari R, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy[J]. Semin Cancer Biol, 2021, 69: 166-177. DOI:10.1016/j.semcancer.2019.11.002.
[6] Shea JE, Miller SC. Skeletal function and structure: implications for tissue-targeted therapeutics[J]. Adv Drug Deliv Rev, 2005, 57(7): 945-957. DOI:10.1016/j.addr.2004.12.017.
[7] Makris G, Tseligka ED, Pirmettis I, et al. Development and pharmacological evaluation of new bone-targeted (99m)Tc-radiolabeled bisphosphonates[J]. Mol Pharm, 2016, 13(7): 2301-2317. DOI:10.1021/acs.molpharmaceut.6b00081.
[8] Hochdörffer K, Abu Ajaj K, Schäfer-Obodozie C, et al. Development of novel bisphosphonate prodrugs of doxorubicin for targeting bone metastases that are cleaved pH dependently or by cathepsin B: synthesis, cleavage properties, and binding properties to hydroxyapatite as well as bone matrix[J]. J Med Chem, 2012, 55(17): 7502-7515. DOI:10.1021/jm300493m.
[9] Xue X, Yu J, Lu F, et al. Enhancement of cancer chemotherapeutic efficacy via bone-targeted drug delivery carrier in bone metastases[J]. Drug Des Devel Ther, 2021, 15: 4455-4468. DOI:10.2147/DDDT.S333999.
[10]Ye WL, Zhao YP, Li HQ, et al. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer[J]. Sci Rep, 2015, 5: 14614. DOI:10.1038/srep14614.
[11]Rudnick-Glick S, Corem-Salkmon E, Grinberg I, et al. Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol) bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model[J]. J Nanobiotechnology, 2016, 14(1):80. DOI: 10.1186/s12951-016-0233-6.
[12]Zu Y, Hu Y, Yu X, et al. Docetaxel-loaded bovine serum albumin nanoparticles conjugated docosahexaenoic acid for inhibiting lung cancer metastasis to bone[J]. Anticancer Agents Med Chem, 2017, 17(4): 542-551. DOI:10.2174/1871520616666160817143656.
[13]Jiang S, Liu Z, Wu L, et al. Tumor targeting with docosahexaenoic acid-conjugated docetaxel for inhibiting lung cancer metastasis to bone[J]. Oncol Lett, 2018, 16(3): 2911-2920. DOI:10.3892/ol.2018.9047.
[14]Chu W, HUANG Y, YANG C, et al. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis[J]. Int J Pharm, 2017, 516(1-2): 352-363. DOI:10.1016/j.ijpharm.2016.11.051.
[15]WEILBAECHER K N, GUISE T A, MCCAULEY L K. Cancer to bone: a fatal attraction[J/OL]. Nature reviews. Cancer, 2011, 11(6): 411-425. DOI:10.1038/nrc3055.
[16]Johnson RW, Nguyen MP, Padalecki SS, et al. TGF-β promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical Hedgehog signaling[J]. Cancer Res, 2011, 71(3): 822-831. DOI:10.1158/0008-5472.CAN-10-2993.
[17]Vanderburgh JP, Kwakwa KA, Werfel TA, et al. Systemic delivery of a gli inhibitor via polymeric nanocarriers inhibits tumor-induced bone disease[J]. J Control Release, 2019, 311-312: 257-272. DOI:10.1016/j.jconrel.2019.08.038.
[18]Niu Y, Yang H, Yu Z, et al. Intervention with the bone-associated tumor vicious cycle through dual-protein therapeutics for treatment of skeletal-related events and bone metastases[J]. ACS Nano, 2022, 16(2): 2209-2223. DOI:10.1021/acsnano.1c08269.
[19]Au KM, Satterlee A, Min Y, et al. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutics[J]. Biomaterials,2016,82: 178-193. DOI:10.1016/j.biomaterials. 2015. 12.018.
[20]Ye WL, Zhao YP, Cheng Y, et al. Bone metastasis target redox-responsive micell for the treatment of lung cancer bone metastasis and anti-bone resorption[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup1): 380-391. DOI:10.1080/21691401.2018.1426007.
[21]Bai SB, Cheng Y, Liu DZ, et al. Bone-targeted PAMAM nanoparticle to treat bone metastases of lung cancer[J]. Nanomedicine (London), 2020, 15(9): 833-849. DOI:10.2217/nnm-2020-0024.
|