[1] Hedequist D, Emans J. Congenital scoliosis: a review and update [J]. J Pediatr Orthop, 2007, 27(1): 106-116. DOI: 10.1097/BPO.0b013e31802b4993.
[2] 邱勇. 青少年特发性脊柱侧凸基因学研究和临床治疗的发展现状及前景[J]. 中华外科杂志, 2018, 56(8): 578-582. DOI: 10.3760/cma.j.issn.0529-5815.2018.08.005.
[3] Christ B, Huang R, Scaal M. Formation and differentiation of the avian sclerotome [J]. Anatomy and Embryology, 2004, 208(5): 333-350. DOI: 10.1007/s00429-004-0408-z.
[4] Hensinger RN.Congenital scoliosis: etiology and associations [J]. Spine, 2009, 34(17): 1745-1750. DOI: 10.1097/BRS.0b013e3181abf69e.
[5] Demoor M, Ollitrault D, Gomez-leduc T, et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction [J]. Biochim Biophys Acta, 2014, 1840(8): 2414-2440. DOI: 10.1016/j.bbagen.2014.02.030.
[6] Wu N, Wang L, Hu J, et al. A recurrent rare SOX9 variant (M469V) is associated with congenital vertebral malformations [J]. Curr Gene Ther, 2019, 19(4): 242-247. DOI: 10.2174/1566523219666190924120 307.
[7] Liao J, Hu N, Zhou N, et al. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation [J]. PLoS One,2014, 9(2): e89025. DOI:10.1371/journal. pone.0089025.
[8] Coleman CM, Tuan RS. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells [J]. Mech Dev, 2003, 120(7): 823-836. DOI: 10.1016/s0925-4773(03)00067-4.
[9] Wu Y, Zhang H, Tang M, et al. High methylation of lysine acetyltransferase 6B is associated with the Cobb angle in patients with congenital scoliosis [J]. J Transl Med, 2020, 18(1): 210. DOI: 10.1186/s12967-020-02367-z.
[10]Desh H, Gray S L, Horton M J, et al. Molecular motor MYO1C, acetyltransferase KAT6B and osteogenetic transcription factor RUNX2 expression in human masseter muscle contributes to development of malocclusion [J]. Arch Oral Biol, 2014, 59(6): 601-607. DOI: 10.1016/j.archoralbio.2014.03.005.
[11]陈崇, 李政, 陈峰, 等. 维甲酸信号通路与先天性脊柱侧凸体节发育的研究进展 [J]. 中华骨与关节外科杂志, 2018, 11(6): 470-474. DOI: 10.3969/j.issn.2095-9958.2018.06.016.
[12]Long F, Ornitz DM. Development of the endochondral skeleton [J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a008334. DOI: 10.1101/cshperspect.a008334.
[13]Lin M, Zhao S, Liu G, et al. Identification of novel FBN1 variations implicated in congenital scoliosis [J]. J Hum Genet, 2020, 65(3): 221-230. DOI: 10.1038/s10038-019-0698-x.
[14]Wu N, Ming X, Xiao J, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis [J]. N Engl J Med, 2015, 372(4): 341-350. DOI: 10.1056/NEJMoa1406829.
[15]Longobardi L, O'rear L, Aakula S, et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling [J]. J Bone Miner Res, 2006, 21(4): 626-636. DOI: 10.1359/jbmr.051213.
[16]Eivers E, Mccarthy K, Glynn C, et al. Insulin-like growth factor (IGF) signalling is required for early dorso-anterior development of the zebrafish embryo [J]. Int J Dev Biol, 2004, 48(10): 1131-1140. DOI: 10.1387/ijdb.041913ee.
[17]Yan B, Zhang Z, Jin D, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation [J]. Nat Commun, 2016, 7: 11151. DOI: 10.1038/ncomms11151.
[18]Chen C, Tan H, Bi J, et al. Identification of competing endogenous RNA regulatory networks in vitamin A deficiency-induced congenital scoliosis by transcriptome sequencing analysis [J]. Cell Physiol Biochem, 2018, 48(5): 2134-2146. DOI: 10.1159/000492556.
[19]Iwahashi S, Lyu J, Tokumura K, et al. Conditional inactivation of the L-type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice [J]. J Cell Physiol, 2022, 237(11): 4292-302. DOI: 10.1002/jcp.30883.
[20]Skórzewska A, Grzymislawska M, Bruska M, et al. Ossification of the vertebral column in human foetuses: histological and computed tomography studies [J]. Folia Morphol (Warsz), 2013, 72(3): 230-238. DOI: 10.5603/fm.2013.0038.
[21]Rebello D, Wohler E, Erfani V, et al. COL11A2 as a candidate gene for vertebral malformations and congenital scoliosis [J]. Human Molecular Genetics, 2023, 32(19): 2913-2928. DOI: 10.1093/hmg/ddad117.
[22]Akiyama H, Lyons J P, Mori-akiyama Y, et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation [J]. Genes Dev, 2004, 18(9): 1072-1087. DOI: 10.1101/gad.1171104.
[23]Zheng Y, Shen P, Tong M, et al. WISP2 downregulation inhibits the osteogenic differentiation of BMSCs in congenital scoliosis by regulating Wnt/β-catenin pathway [J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(7): 166783. DOI: 10.1016/j.bbadis.2023.166783.
[24]Ishiwata S, Iizuka H, Sonoda H, et al. Upregulated miR-224-5p suppresses osteoblast differentiation by increasing the expression of Pai-1 in the lumbar spine of a rat model of congenital kyphoscoliosis [J]. Mol Cell Biochem, 2020, 475(1-2): 53-62. DOI: 10.1007/s11010-020-03859-8.
[25]Somony A, Carreon LY, H Jmark K, et al. Concordance rates of adolescent idiopathic scoliosis in a danish twin population [J]. Spine (Phila Pa 1976), 2016, 41(19):1503-1507. DOI: 10.1097/brs. 00000000 00001681.
[26]Vink CP, Ockeloen CW, Ten Kate S, et al. Variability in dentofacial phenotypes in four families with WNT10A mutations [J]. Eur J Hum Genet, 2014, 22(9): 1063-1070. DOI: 10.1038/ejhg.2013.300.
[27]Kwon H, Paschos NK, HU JC, et al. Articular cartilage tissue engineering: the role of signaling molecules [J]. Cell Mol Life Sci, 2016, 73(6): 1173-1194. DOI: 10.1007/s00018-015-2115-8.
[28]Davidson D, Blanc A, Filion D, et al. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis [J]. J Biol Chem, 2005, 280(21): 20509-20515. DOI: 10.1074/jbc.M410148200.
[29]Wang S, Chai X, Yan Z, et al. Novel FGFR1 variants are associated with congenital scoliosis [J]. Genes (Basel), 2021, 12(8):1226. DOI: 10.3390/genes12081126.
|