中国临床解剖学杂志 ›› 2019, Vol. 37 ›› Issue (2): 223-227.doi: 10.13418/j.issn.1001-165x.2019.02.022

• 技术方法 • 上一篇    下一篇

磁压榨超微创技术建立兔获得性气管食管瘘动物模型

高慧敏1,2,3, 邱明龙2,3, 张砚超2,3, 刘豪2,3, 马思捷2,3, 付珊2,3, 吕毅1,2, 严小鹏1,2   

  1. 1.西安交通大学第一附属医院肝胆外科,  西安   710061;    2.精准外科与再生医学国家地方联合工程研究中心,  西安   710061;
    3.西安交通大学启德书院,  西安    710061
  • 收稿日期:2018-11-08 出版日期:2019-03-25 发布日期:2019-04-29
  • 通讯作者: 严小鹏, 博士,助理研究员,E-mail:yanxiaopeng99@163.com
  • 作者简介:高慧敏(1998-),女,山东枣庄人,本科在读,主要从事磁外科应用与研究,Tel:18392998792,E-mail:1005737282@qq.com
  • 基金资助:

    国家自然科学基金(81700545);陕西省自然科学基础研究计划(2017JQ8021);中央高校基本科研业务费专项资金(xjj2018jchz14);西安交通大学大学生创新训练项目(GJ201810698 131)

Establishment of acquired tracheoesophageal fistula by ultra-minimally invasive magnetic compression technique in rabbits

GAO Hui-min 1,2,3, QIU Ming-long 2,3, ZHANGg Yan-chao 2,3, LIU Hao 2,3, MA Si-jie 2,3, FU Shan 2,3, LV Yi 1,2, YAN Xiao-peng 1,2   

  1. 1. Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061; 2. National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an 710061; 3. Qide College,Xi’an Jiaotong University, Xi'an 710061, China
  • Received:2018-11-08 Online:2019-03-25 Published:2019-04-29

摘要:

目的 探讨磁压榨超微创技术建立兔气管食管瘘(TEF)动物模型的可行性。  方法 10只新西兰兔麻醉后分别在颈段气管和食管内置入子母磁体,术后隔日X线拍片,观察子母磁体位置,当发现子母磁体脱离原位置进入消化道后3 d处死动物,观察TEF大体标本情况,并取瘘口组织行HE和Masson染色进行病理学观察。  结果 磁压榨超微创技术建立TEF平均操作时间(3.20±0.81)min,术后(6.90±1.14)d子母磁体脱落进入消化道,同时TEF形成,大体标本观察可见瘘口位于气管膜部与食管前壁之间,瘘口周围组织轻度粘连,组织病理学观察可见瘘口自气管膜部与食管前壁相通,与临床上获得性TEF病理学特征极为接近。  结论 磁压榨超微创技术可通过非手术方式建立兔获得性TEF,具有操作简单、创伤小、成功率高等优点,可谓一种理想的获得性TEF动物造模方法。

关键词: 磁压榨技术,  气管食管瘘,  动物模型,  微创

Abstract:

Objective To explore the feasibility of establishing ultra-invasive magnetic compression technology to establish a rabbit model of tracheal esophageal fistula(TEF). Methods Ten New Zealand rabbits were anesthetized and inserted into the parent magnet and daughter magnet in the cervical trachea and esophagus, respectively. X-ray was taken the following day to observe the location of the mother and daughter magnets. When the parent and daughter magnets were found to be out of the original position and entered the digestive tract, the animals were sacrificed three days later. The general specimens of tracheal esophagus were taken, and the tissue of the fistula was taken for HE and Masson staining for pathological observation. Results The average operation time of magnetic compression ultra-invasive technique to establish a TEF was (3.20 ± 0.81) min.  (6.90 ± 1.14) d after operation the magnets fell into the digestive tract, while TEF formatted. There was a slight adhesion between the tracheal membrane and the anterior wall of the esophagus, and the tissue around the fistula was observed. Histopathological observation showed that the stenosis was connected to the anterior wall of the esophagus, which was closely related to the pathological features of the clinically acquired tracheoesophageal fistula. Conclusions Establishment of rabbit TEF using magnetic compression ultra-minimally invasive technology is a simple, minimally invasive, and feasible method for animal model of TEF. It can be used as an ideal animal modeling method for obtaining TEF.

Key words: Magnetic compression technique,  Tracheoesophageal fistula,  Animal model,  Minimal invasive