中国临床解剖学杂志 ›› 2019, Vol. 37 ›› Issue (5): 603-607.doi: 10.13418/j.issn.1001-165x.2019.05.027
• 综述 • 上一篇
黄达1, 李金晟2, 吕昊3 综述, 张洪武1 审校
收稿日期:
2018-12-29
出版日期:
2019-09-25
发布日期:
2019-09-26
通讯作者:
张洪武,副教授,E-mail:854174451@qq.com
作者简介:
黄达(1991-),在读硕士,研究方向:人体解剖与组织胚胎学,E-mail:1171563633@qq.com
基金资助:
HUANG Da1, LI Jin-sheng2, LV Hao3, ZHANG Hong-wu1
Received:
2018-12-29
Online:
2019-09-25
Published:
2019-09-26
中图分类号:
黄达, 李金晟, 吕昊, 张洪武. 生物3D打印干细胞的研究进展[J]. 中国临床解剖学杂志, 2019, 37(5): 603-607.
HUANG Da, LI Jin-sheng, LV Hao, ZHANG Hong-wu. Research progress in biological 3D printing stem cells[J]. Chinese Journal of Clinical Anatomy, 2019, 37(5): 603-607.
[1] | 高建平, 马朋高, 于九皋, 等. 组织工程与生物可降解高分子骨架[J]. 高分子通报, 2000, (4): 89-95. |
[2] | 曹谊林, 周广东, 刘伟, 等. 组织工程与创伤医学[J]. 中华创伤杂志, 2005, 21(1): 25-28. |
[3] | 张志雄, 胡帼颖, 温叶飞, 等. 组织工程技术的发展现状及趋势(四)-组织构建与支撑技术[J]. 透析与人工器官, 2009, 20(4): 25-31. |
[4] | 裴国献. 组织工程学-21世纪面临的机遇与挑战[J]. 中华创伤骨科杂志, 2006, (1): 4-7. |
[5] | Hull CW. Apparatus for production of three-dimensional objects by stereolithography[P]. 1986, US Pat 4575330. |
[6] | Murphy SV, Atala A. 3D bioprinting of tissues and organs[J]. Nat Biotechnol, 2014, 32(8): 773-785. |
[7] | Gao G, Huang Y, Schilling AF, et al, Organ bioprinting: are we there yet[J]. Adv Healthc Mater, 2018, 7(1): 1701018. |
[8] | Huang Y, Zhang XF, Gao G, et al. 3D bioprinting and the current applications in tissue engineering[J]. Biotechnol J, 2017, 12(8): 1600734. |
[9] | Donderwinkel I, van Hest JC, Neil R Cameron. Bio-inks for 3D bioprinting: recent advances and future prospects[J]. Polym Chem, 2017, 8(31) :4451-4471. |
[10] | Garreta E, Oria R, Tarantino C, et al. Tissue engineering by decellularization and 3D bioprinting[J]. Materials Today, 2017: 166-178. |
[11] | Xu C, Chai W, Huang Y, et al. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes[J]. Biotechnol Bioeng, 2012, 109(12): 3152-3160. |
[12] | Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting[J]. Int Mater Rev, 2014, 59(8): 430-448. |
[13] | Xu T, Zhao W, Zhu JM, et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology[J]. Biomaterials, 2013, 34(1): 130-139. |
[14] | Delrot P, Modestino MA, Gallaire F, et al. Inkjet printing of viscous monodisperse microdroplets by laser-induced flow focusing[J]. Phys Rev Applied, 2016, 6(2):024003. |
[15] | Lee H, Yoo JJ, Kang HW, et al. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology[J]. Biofabrication, 2016, 8(1): 015011. |
[16] | Devillard R, Pagès E, Correa MM, et al. Cell patterning by laser-assisted bioprinting[J]. Methods Cell Biol, 2014, 119(119C): 159-174. |
[17] | Burks HE, Phamduy TB, Azimi MS, et al. Laser direct-write onto live tissues: a novel model for studying cancer cell migration[J]. J Cell Physiol, 2016, 231(11): 2333-2338. |
[18] | Au AK, Lee W, Folch A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices[J]. Lab Chip, 2014, 14(7): 1294-1301. |
[19] | Hong S, Sycks D, Chan HF, et al. 3D Printing of highly stretchable and tough hydrogels into complex, cellularized structures[J]. Adv Mater, 2015, 27(27): 4035-4040. |
[20] | Wang Z, Abdulla R, Parker B, et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks[J]. Biofabrication, 2015, 7(4): 045009. |
[21] | Harrison SE, Sozen B, Christodoulou N, et al. Assembly of embryonic and extra-embryonic stem cells to mimic embryogenesis in vitro[J]. Science, 2017, 356(6334): eaal1810. |
[22] | Li Q, Hutchins AP, Chen Y, et al. A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes[J]. Nat Commun, 2017, 3(8): 15166. |
[23] | Guo F, Li L, Li J, et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells[J]. Cell Res, 2017, 27(8): 967-988. |
[24] | Guo X, Gu X, Hareshwaree S, et al. Induced pluripotent stem cell-conditional medium inhibits H9C2 cardiomyocytes apoptosis via autophagy flux and Wnt/β-catenin pathway[J]. J Cell Mol Med, 2019, 23(6): 4358-4374. |
[25] | Shi Y, Inoue H, Wu JC, et al. Induced pluripotent stem cell technology: a decade of progress[J]. Nat Rev Drug Discov, 2017, 16(2): 115-130. |
[26] | Del Carmen Ortuño-Costela M, García-López M, Cerrada V, et al. iPSCs: a powerful tool for skeletal muscle tissue engineering[J]. J Cell Mol Med, 2019, 23(6): 3784-3794. |
[27] | Wang Y, Hao L, Li H, et al. Abnormal nuclear aggregation and myotube degeneration in myotonic dystrophy type1[J]. Neurol Sci, 2019, 40(6): 1255-1265. |
[28] | Soeda S, Saito R, Fujita N, et al. Neuronal differentiation defects in induced pluripotent stem cells derived from a Prader-Willi syndrome patient[J]. Neurosci Lett, 2019, 703: 162-167. |
[29] | Schneider S, Unger M, van Griensven M, et al. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine[J]. Eu J Med Res, 2017, 22(1):17-27. |
[30] | Bertozzi N, Simonacci F, Grieco MP, et al. The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing[J]. Ann Med Surg(Lond), 2017, 20(C): 41-48. |
[31] | Almalki SG, Agrawal DK. ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells[J]. Stem Cell Res Ther, 2017, 8(1): 113-126. |
[32] | Shi J, Liang J, Guo B, et al. Adipose-derived stem cells cocultured with chondrocytes promote the proliferation of chondrocytes[J]. Stem Cells Int, 2017, 2017(3): 1-17. |
[33] | Song K, Li L, Yan X, et al. Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β-glycerophosphate/collagen hybrid hydrogel[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1): 231-240. |
[34] | Ohishi M, Schipani E. Bone marrow mesenchymal stem cells[J]. J Cell Biochem, 2010, 109(2): 277-282. |
[35] | Li L, He Y, Chen X, et al. Comparison of proliferative and multilineage differentiation potential of rabbit bone marrow mesenchymal stem cells and wharton's jelly mesenchymal stem cells[J]. Journal of Biomaterials & Tissue Engineering, 2017, 7(11): 1154-1162. |
[36] | Chen Y, Wang C, Huang Q, et al. Caveolin-1 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into cardiomyocytes[J]. Cardiology, 2017, 136(1): 40-48. |
[37] | Rutz AL, Hyland KE, Jakus AE, et al. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels[J]. Adv Mater, 2015, 27(9): 1607-1614. |
[38] | Bigi A, Cojazzi G, Panzavolta S, et al. Stabilization of gelatin fifilms by crosslinking with genipin[J]. Biomaterials, 2002, 23(24): 4827-4832 |
[39] | Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels[J]. Biofabrication, 2014, 6(2): 024105. |
[40] | 关林波, 但卫华, 曾睿, 等. 明胶及其在生物材料中的应用[J]. 材料导报, 2006, 20(s2): 380-383. |
[41] | Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering[J]. Acta Biomater, 2014, 10(4): 1646-1662. |
[42] | Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink[J]. Adv Mater, 2016, 28(4): 677-684. |
[43] | Arlov Ø, Öztürk E, Steinwachs M, et al. Biomimetic sulphated alginate hydrogels suppress IL-1β-induced inflammatory responses in human chondrocytes[J]. Eur Cell Mater, 2017, 33: 76-89. |
[44] | Saldin LT, Cramer MC, Velankar SS, et al. Extracellular matrix hydrogels from decellularized tissues: structure and function[J]. Acta Biomater, 2017, 49: 1-15. |
[45] | Mayorcaguiliani AE, Madsen CD, Cox TR, et al. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix[J]. Nat Med, 2017, 23(7): 890-898. |
[46] | Skardal A, Atala A. Biomaterials for integration with 3-D bioprinting[J]. Ann Biomed Eng, 2015, 43(3): 730-746. |
[47] | Hashim SNM, Yusof MFH, Zahari W, et al. Angiogenic potential of extracellular matrix of human amniotic membrane[J]. Tissue Eng Regen Med, 2016, 13(3): 211-217. |
[48] | Akash MS, Rehman K. Recent progress in biomedical applications of pluronic (PF127): pharmaceutical perspectives[J]. J Control Release, 2015, 209: 120-138. |
[49] | Rukmani SJ, Lin P, Andrew JS, et al. Molecular modeling of complex cross-linked networks of PEGDA nanogels[J]. J Phys Chem B, 2019, 123(18): 4129-4138. |
[50] | Ozler SB, Bakirci E, Kucukgul C, et al. Three-dimensional direct cell bioprinting for tissue engineering[J]. J Biomed Mater Res Part B Appl Biomater, 2017, 105(8): 2530-2544. |
[51] | Miller JS, Shen CJ, Legant WR, et al. Bioactive hydrogels made from step-growth derived PEG-peptide macromers[J]. Biomaterials, 2010, 31(13): 3736-3743. |
[52] | Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink[J]. Biomaterials, 2016, 106: 58-68. |
[53] | Gao L, Kupfer ME, Jung JP, et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold[J]. Circ Res, 2017, 120(8): 1318-1325. |
[54] | Choi YJ, Jun YJ, Kim DY, et al. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss[J]. Biomaterials, 2019, 206: 160-169. |
[55] | Pateman CJ, Harding AJ, Glen A, et al. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair[J]. Biomaterials, 2015, 49: 77-89. |
[56] | Hu F, Zhang X, Liu H, et al. Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration[J]. Biochem Biophys Res Commun, 2017, 489(2): 171-178. |
[57] | Johnson BN, Lancaster KZ, Zhen G, et al. 3D printed anatomical nerve regeneration pathways[J]. Adv Funct Mater, 2015, 25(39): 6205-6217. |
[58] | Morille M, Toupet K, Montero-Menei CN, et al. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis[J]. Biomaterials, 2016, 88: 60-69. |
[59] | Zhang ZZ, Wang SJ, Zhang JY, et al. 3D-printed poly(ε-caprolactone) scaffold augmented with mesenchymal stem cells for total meniscal substitution[J]. Am J Sports Med, 2017, 45(7): 1479-1511. |
[60] | Shi X, Zhou J, Zhao Y, et al. Gradient-regulated hydrogel for interface tissue engineering: steering simultaneous osteo/chondrogenesis of stem cells on a chip[J]. Adv Healthc Mater, 2013, 2(6): 846-853. |
[1] | 江剑宏, 段仁鹏, 李晓锋. 国人胆道三维重建解剖变异应用研究[J]. 中国临床解剖学杂志, 2024, 42(1): 1-4. |
[2] | 郭红志, 王瑜, 张加琪, 梁海彬, 马梓玮, 冯伟, 吴忧, 司子燚. 血管铸型结合CT三维模型评估先兆子痫胎盘血管结构[J]. 中国临床解剖学杂志, 2024, 42(1): 5-10. |
[3] | 李佳伟, 张静, 李灿然, 兰文杰, 籍庆余, 郭志勇, 张云凤, 刘启, 陈清威, 李筱贺. 蒙古族人群股骨近端解剖参数X线测量[J]. 中国临床解剖学杂志, 2024, 42(1): 11-16. |
[4] | 李琨, 张燕, 郭冉, 郝咪咪, 吴轩宇, 徐艺芳, 王超群, 马文童, 张灵淇, 杨宏宇, 李志军, 张少杰, 王星. 儿童及青少年枕颈角与后枕颈角数字化测量及其临床意义[J]. 中国临床解剖学杂志, 2024, 42(1): 17-20. |
[5] | 王兴航, 丁佳媛, 李放, 包翠芬, 阎丽菁. 人参皂苷Rg1通过抑制NLRP3炎症小体途径减轻氧糖剥夺/复供后小胶质细胞炎症反应[J]. 中国临床解剖学杂志, 2024, 42(1): 33-41. |
[6] | 吴研飞, 马剑雄, 卢斌, 王颖, 柏豪豪, 靳洪震, 马信龙. CT后处理技术重建CT值与终板抗压强度的相关性研究[J]. 中国临床解剖学杂志, 2024, 42(1): 71-76. |
[7] | 庄万强, 唐毅, 骆勇刚, 张辉. 关节镜联合胫骨高位截骨术对髌骨位置及髌股关节功能影响的早中期回顾性研究[J]. 中国临床解剖学杂志, 2024, 42(1): 77-82. |
[8] | 罗鹰, 窦伟誉, 吴小杭, 陈璟昆, 彭昌贵, 潘剑英 . 微创海马钢板内固定治疗跟骨骨折并发症的影响因素[J]. 中国临床解剖学杂志, 2024, 42(1): 83-88. |
[9] | 陈俊臣, 曹文英, 罗燕君, 何婉仪, 朱真真, 彭志强. 抽吸取栓术与抽吸结合支架取栓术治疗脑前循环栓塞疗效比较[J]. 中国临床解剖学杂志, 2024, 42(1): 89-93. |
[10] | 胡硕红, 郑学彬, 李富杰, 王鸿. 种植基台材料对种植体周围软硬组织影响的前瞻性临床研究[J]. 中国临床解剖学杂志, 2024, 42(1): 94-98. |
[11] | 林杰, 金甬, 庞清江. 胃肠道菌群与骨质疏松症关系的研究进展[J]. 中国临床解剖学杂志, 2024, 42(1): 109-111. |
[12] | 张悦, 蔡兴博, 张必欢, 王斌, 徐永清. 全腕关节置换术后腕关节生物力学研究进展[J]. 中国临床解剖学杂志, 2024, 42(1): 112-114. |
[13] | 陈仁, 杨胜波. 咬肌的解剖与临床应用研究进展[J]. 中国临床解剖学杂志, 2024, 42(1): 115-117. |
[14] | 徐浩铜, 徐万宇, 吴毅, 何明静, 雷秀兵, 田伏洲. 慢性胰腺炎脾门假性囊肿分类及其与SPH关系的影像学研究[J]. 中国临床解剖学杂志, 2023, 41(6): 652-656. |
[15] | 刘展, 陶胜忠, 卢慧鹏, 王在斌, 睢豫擘, 牛光明. MRI三维观察血管压迫神经根在原发性三叉神经痛患者和非疼痛人群中差异[J]. 中国临床解剖学杂志, 2023, 41(6): 667-674. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|