中国临床解剖学杂志 ›› 2020, Vol. 38 ›› Issue (3): 363-366.doi: 10.13418/j.issn.1001-165x.2020.03.025
刘祺1, 2, 杨舟1, 朱青安1
收稿日期:
2019-09-04
出版日期:
2020-05-25
发布日期:
2020-06-02
通讯作者:
朱青安,教授,博士研究生导师,E-mail:qinganzhu @gmail.com
作者简介:
刘祺(1988-),男,博士,主治医师,研究方向:椎间盘退变、骨质疏松,E-mail:413440129@qq.com
基金资助:
LIU Qi1,2, YANG Zhou1, ZHU Qing-an1
Received:
2019-09-04
Online:
2020-05-25
Published:
2020-06-02
中图分类号:
刘祺, 杨舟, 朱青安. 氧化应激与椎间盘退变的研究进展[J]. 中国临床解剖学杂志, 2020, 38(3): 363-366.
LIU Qi, YANG Zhou, ZHU Qing-an. Research progress of oxidative stress and disc degeneration[J]. Chinese Journal of Clinical Anatomy, 2020, 38(3): 363-366.
[1] | Pulickal T, Boos J, Konieczny M, et al. MRI identifies biochemical alterations of intervertebral discs in patients with low back pain and radiculopathy[J]. Eur Radiol, 2019, 29(12): 6443-6446. |
[2] | Vo NV, Hartman RA, Patil PR, et al. Molecular mechanisms of biological aging in intervertebral discs[J]. J Orthop Res, 2016, 34(8): 1289-1306. |
[3] | Kauppila T, Kauppila J, Larsson NG. Mammalian mitochondria and aging: an Update[J]. Cell Metab, 2017, 25(1): 57-71. |
[4] | Suzuki S, Fujita N, Hosogane N, et al. Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration[J]. Arthritis Res Ther, 2015, 17: 316. |
[5] | Dimozi A, Mavrogonatou E, Sklirou A, et al. Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells[J]. Eur Cell Mater, 2015, 30: 89-102, 103. |
[6] | Schröder K. NADPH oxidases in bone homeostasis and osteoporosis[J]. Free Radic Biol Med, 2019, 132: 67-72. |
[7] | Huang YC, Urban JP, Luk KD. Intervertebral disc regeneration: do nutrients lead the way[J]? Nat Rev Rheumatol, 2014, 10(9): 561-566. |
[8] | Huang YC, Leung VY, Lu WW, et al. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc[J]. Spine J, 2013, 13(3): 352-362. |
[9] | Lee DC, Adams CS, Albert TJ, et al. In situ oxygen utilization in the rat intervertebral disc[J]. J Anat, 2007, 210(3): 294-303. |
[10] | Gruber HE, Chow Y, Hoelscher GL, et al. Micromass culture of human anulus cells: morphology and extracellular matrix production[J]. Spine (Phila Pa 1976), 2010, 35(10): 1033-1038. |
[11] | Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis[J]. Cell, 2015, 163(3): 560-569. |
[12] | Park JB, Byun CH, Park EY. Rat Notochordal cells undergo premature stress-induced senescence by high glucose[J]. Asian Spine J, 2015, 9(4): 495-502. |
[13] | Nasto LA, Robinson AR, Ngo K, et al. Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration[J]. J Orthop Res, 2013, 31(7): 1150-1157. |
[14] | Gliemann L, Nyberg M, Hellsten Y. Nitric oxide and reactive oxygen species in limb vascular function: what is the effect of physical activity[J]? Free Radic Res, 2014, 48(1): 71-83. |
[15] | Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited[J]. Annu Rev Pathol, 2014, 9: 119-145. |
[16] | Sahoo S, Meijles DN, Pagano PJ. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases[J]? Clin Sci (Lond), 2016, 130(5): 317-335. |
[17] | Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015, 4: 180-183. |
[18] | Davalli P, Mitic T, Caporali A, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases[J]. Oxid Med Cell Longev, 2016, 2016: 3565127. |
[19] | Mavrogonatou E, Angelopoulou MT, Kletsas D. The catabolic effect of TNFalpha on bovine nucleus pulposus intervertebral disc cells and the restraining role of glucosamine sulfate in the TNFalpha-mediated up-regulation of MMP-3[J]. J Orthop Res, 2014, 32(12): 1701-1707. |
[20] | Chen JW, Ni BB, Li B, et al. The responses of autophagy and apoptosis to oxidative stress in nucleus pulposus cells: implications for disc degeneration[J]. Cell Physiol Biochem, 2014, 34(4): 1175-1189. |
[21] | Hou G, Lu H, Chen M, et al. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs[J]. Arch Gerontol Geriatr, 2014, 59(3): 665-669. |
[22] | Valko M, Jomova K, Rhodes CJ, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016, 90(1): 1-37. |
[23] | Peng B, Hou S, Shi Q, et al. The relationship between cartilage end-plate calcification and disc degeneration: an experimental study[J]. Chin Med J (Engl), 2001, 114(3): 308-312. |
[24] | Cai XY, Xia Y, Yang SH, et al. Ropivacaine- and bupivacaine-induced death of rabbit annulus fibrosus cells in vitro: involvement of the mitochondrial apoptotic pathway[J]. Osteoarthritis Cartilage, 2015, 23(10): 1763-1775. |
[25] | Chen JW, Ni BB, Zheng XF, et al. Hypoxia facilitates the survival of nucleus pulposus cells in serum deprivation by down-regulating excessive autophagy through restricting ROS generation[J]. Int J Biochem Cell Biol, 2015, 59:1-10. |
[26] | Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurol Res, 2017, 39(1): 73-82. |
[27] | Gruber HE, Watts JA, Riley FE, et al. Mitochondrial bioenergetics, mass, and morphology are altered in cells of the degenerating human annulus[J]. J Orthop Res, 2013, 31(8): 1270-1275. |
[28] | Park JS, Park JB, Park IJ, et al. Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress[J]. Int Orthop, 2014, 38(6): 1311-1320. |
[29] | Park EY, Park JB. High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells[J]. Int Orthop, 2013, 37(12): 2507-2514. |
[30] | Feng C, Yang M, Lan M, et al. ROS: crucial intermediators in the pathogenesis of intervertebral disc degeneration[J]. Oxid Med Cell Longev, 2017, 2017: 5601593. |
[31] | Alvarez-Garcia O, Matsuzaki T, Olmer M, et al. Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration[J]. J Orthop Res, 2017, 35(12): 2682-2691. |
[32] | Gruber HE, Watts JA, Hoelscher GL, et al. Mitochondrial gene expression in the human annulus: in vivo data from annulus cells and selectively harvested senescent annulus cells[J]. Spine J, 2011, 11(8): 782-791. |
[33] | Bakirezer SD, Yaltirik CK, Kaya AH, et al. The evaluation of glutathione reductase and malondialdehyde levels in patients with lumbar disc degeneration disease[J]. In Vivo, 2019, 33(3): 811-814. |
[34] | León Fernández OS, Pantoja M, Díaz Soto MT, et al. Ozone oxidative post-conditioning reduces oxidative protein damage in patients with disc hernia[J]. Neurol Res, 2012, 34(1): 59-67. |
[35] | Ding F, Shao ZW, Xiong LM. Cell death in intervertebral disc degeneration[J]. Apoptosis, 2013, 18(7): 777-785. |
[36] | Kepler CK, Ponnappan RK, Tannoury CA, et al. The molecular basis of intervertebral disc degeneration[J]. Spine J, 2013, 13(3): 318-330. |
[37] | Yang L, Rong Z, Zeng M, et al. Pyrroloquinoline quinone protects nucleus pulposus cells from hydrogen peroxide-induced apoptosis by inhibiting the mitochondria-mediated pathway[J]. Eur Spine J, 2015, 24(8): 1702-1710. |
[38] | Zhang F, Zhao X, Shen H, et al. Molecular mechanisms of cell death in intervertebral disc degeneration (Review)[J]. Int J Mol Med, 2016, 37(6): 1439-1448. |
[39] | Zhang SJ, Yang W, Wang C, et al. Autophagy: a double-edged sword in intervertebral disk degeneration[J]. Clin Chim Acta, 2016, 457: 27-35. |
[40] | Feng C, Liu H, Yang M, et al. Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways[J]. Cell Cycle, 2016, 15(13): 1674-1684. |
[41] | Wang F, Cai F, Shi R, et al. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2016, 24(3): 398-408. |
[42] | Krupkova O, Handa J, Hlavna M, et al. The natural polyphenol epigallocatechin gallate protects intervertebral disc cells from oxidative stress[J]. Oxid Med Cell Longev, 2016, 2016: 7031397. |
[43] | Zhou N, Lin X, Dong W, et al. SIRT1 alleviates senescence of degenerative human intervertebral disc cartilage endo-plate cells via the p53/p21 pathway[J]. Sci Rep, 2016, 6: 22628. |
[44] | Krishnamoorthy D, Hoy RC, Natelson DM, et al. Dietary advanced glycation end-product consumption leads to mechanical stiffening of murine intervertebral discs[J]. Dis Model Mech, 2018, 11(12): dmm036012. |
[45] | Yang D, Wang D, Shimer A, et al. Glutathione protects human nucleus pulposus cells from cell apoptosis and inhibition of matrix synthesis[J]. Connect Tissue Res, 2014, 55(2): 132-139. |
[46] | Scharf B, Clement CC, Yodmuang S, et al. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification[J]. Chem Biol, 2013, 20(7): 922-934. |
[47] | Cannizzo ES, Clement CC, Morozova K, et al. Age-related oxidative stress compromises endosomal proteostasis[J]. Cell Rep, 2012, 2(1): 136-149. |
[48] | Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content[J]. Nat Rev Rheumatol, 2014, 10(1): 44-56. |
[49] | Zheng G, Pan Z, Zhan Y, et al. TFEB protects nucleus pulposus cells against apoptosis and senescence via restoring autophagic flux[J]. Osteoarthritis Cartilage, 2019, 27(2): 347-357. |
[50] | Chen Y, Wu Y, Shi H, et al. Melatonin ameliorates intervertebral disc degeneration via the potential mechanisms of mitophagy induction and apoptosis inhibition[J]. J Cell Mol Med, 2019, 23(3): 2136-2148. |
[51] | Yao M, Zhang J, Li Z, et al. Marein protects human nucleus pulposus cells against high glucose-induced injury and extracellular matrix degradation at least partly by inhibition of ROS/NF-kappaB pathway[J]. Int Immunopharmacol, 2020, 80: 106126. |
[52] | Song Y, Wang Z, Liu L, et al. 1, 4-Dihydropyridine (DHP) suppresses against oxidative stress in nucleus pulposus via activating sirtuin-1[J]. Biomed Pharmacother, 2020, 121: 109592. |
[53] | Guo MB, Wang DC, Liu HF, et al. Lupeol against high-glucose-induced apoptosis via enhancing the anti-oxidative stress in rabbit nucleus pulposus cells[J]. Eur Spine J, 2018, 27(10): 2609-2620. |
[1] | 林煜倩, 赵薇, 王建琳, 王玉娟, 余青泠, 饶利兵, 李莉. 个体化“三定式”导向器在椎间孔镜手术中的应用研究[J]. 中国临床解剖学杂志, 2023, 41(5): 599-602. |
[2] | 顾宏林, 昌耘冰. 颈椎前路局部自体骨椎间植骨的应用进展[J]. 中国临床解剖学杂志, 2021, 39(5): 621-623. |
[3] | 梁昌详, 郑晓青, 肖丹, 黄勇兄, 梁国彦, 陈崇, 尹东, 昌耘冰. 双通道镜下腰椎间融合术治疗退变性腰椎疾病的手术要点和早期疗效[J]. 中国临床解剖学杂志, 2020, 38(6): 703-708. |
[4] | 薛厚军, 潘磊, 黄杰彬, 雷宇, 王诗成, 陈伟雄. 比较经皮侧路镜BESI技术与TESSY技术在L5~S1椎间盘突出症中的临床应用[J]. 中国临床解剖学杂志, 2020, 38(6): 709-714. |
[5] | 闫慧博, 金大地, 黎庆初, 邱奕雁, 吴毅, 杨昌盛. 前路腰椎融合术治疗复发性腰椎间盘突出症的临床效果和安全性分析#br#[J]. 中国临床解剖学杂志, 2020, 38(5): 600-604. |
[6] | 王诗成, 潘磊, 薛厚军, 雷宇. 经皮椎间孔镜下椎板间入路治疗腰椎间盘突出症的并发症分析#br#[J]. 中国临床解剖学杂志, 2020, 38(5): 605-608. |
[7] | 苏宝科, 王威, 张云凤, 王利东, 李志军, 许阳阳, 王海燕, 李筱贺. 内镜治疗青少年腰椎间盘突出症的研究进展[J]. 中国临床解剖学杂志, 2019, 37(4): 469-470. |
[8] | 姜欢畅, 王吉兴, 尚平. 滑脱前期腰椎峡部裂屈伸运动中旋转稳定性分析[J]. 中国临床解剖学杂志, 2015, 33(1): 105-107. |
[9] | 曾忠友, 严卫锋, 唐宏超, 吴鹏, 张建乔, 金才益. 腰椎椎弓峡部裂伴椎体Ⅱ°或以上滑脱的手术治疗策略[J]. 中国临床解剖学杂志, 2013, 31(5): 591-595. |
[10] | 刘显宏, 欧云生, 蒋电明, 权正学, 张乐, 陈鑫, 胡侦明. n-HA/PA66与PEEK cage在颈前路椎间盘切除减压术后椎间隙重建的比较研究[J]. 中国临床解剖学杂志, 2012, 30(6): 687-692. |
[11] | 陈坚, 龙厚清, 刘少喻, 叶淦湖, 李浩淼, 魏富鑫, 黄阳亮, 李佛保. 青少年腰椎间盘突出症并发椎体后缘骨离断的临床特征及外科处理[J]. 中国临床解剖学杂志, 2010, 28(1): 90-. |
[12] | 沈爱东, 徐瑞生, 吴洁石, 王雪松, 薛骏, 包聚良. 腰椎滑脱时椎体间接触面积的变化规律[J]. 中国临床解剖学杂志, 2010, 28(1): 94-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|