[1] |
Ehrhardt MJ, Mulrooney DA. Metabolic syndrome in adult survivors of childhood cancer: the intersection of oncology, endocrinology, and cardiology[J]. Lancet Diabetes Endocrinol, 2015, 3(7): 494-496. DOI: 10.1016/s2213-8587(15)00031-5.
|
[2] |
Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402[J]. J Clin Oncol, 2013, 31(3): 337-343. DOI: 10.1200/jco.2012.43.2674.
|
[3] |
Soussain C, Ricard D, Fike JR, et al. CNS complications of radiotherapy and chemotherapy[J]. Lancet, 2009, 374(9701): 1639-1651. DOI: 10.1016/s0140-6736(09)61299-x.
|
[4] |
Schnegg CI, Greene-Schloesser D, Kooshki M, et al. The PPARdelta agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation[J]. Free Radic Biol Med, 2013, 61(3): 1-9. DOI: 10.1016/j.freeradbiomed.2013.03.002.
|
[5] |
Pereira Dias G, Hollywood R, Bevilaqua MC, et al. Consequences of cancer treatments on adult hippocampal neurogenesis: implications for cognitive function and depressive symptoms[J]. Neuro Oncol, 2014, 16(4): 476-492. DOI: 10.1093/neuonc/not321.
|
[6] |
Son Y, Yang M, Kim JS, et al. Hippocampal dysfunction during the chronic phase following a single exposure to cranial irradiation[J]. Exp Neurol, 2014, 254(4): 134-144. DOI: 10.1016/j.expneurol.2014.01.018.
|
[7] |
Son Y, Yang M, Wang H, et al. Hippocampal dysfunctions caused by cranial irradiation: a review of the experimental evidence[J]. Brain Behav Immun, 2015, 45(3): 287-296. DOI: 10.1016/j.bbi.2015.01.007.
|
[8] |
Cameron HA, Glover LR. Adult neurogenesis: beyond learning and memory[J]. Annu Rev Psychol, 2015, 66(1): 53-81. DOI: 10.1146/annurev-psych-010814-015006.
|
[9] |
Yousuf S, Brat DJ, Shu HK, et al. Progesterone improves neurocognitive outcomes following therapeutic cranial irradiation in mice[J]. Horm Behav, 2017, 96(11): 21-30. DOI: 10.1016/j.yhbeh.2017.08.004.
|
[10] |
Cacao ECucinotta FA. Modeling Heavy-Ion Impairment of Hippocampal Neurogenesis after Acute and Fractionated Irradiation[J]. Radiat Res, 2016, 186(6): 624-637. DOI: 10.1667/rr14569.1.
|
[11] |
Tang FR, Loke WK, Wong P, et al. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse[J]. Physiol Behav, 2017, 175(6): 37-46. DOI: 10.1016/j.physbeh.2017.03.027.
|
[12] |
Tang FR, Loke WK, Khoo BC. Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging[J]. Brain Dev, 2017, 39(4): 277-293. DOI: 10.1016/j.braindev.2016.11.001.
|
[13] |
Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study[J]. Lancet, 2012, 380(9840): 499-505. DOI: 10.1016/s0140-6736(12)60815-0.
|
[14] |
Monje ML, Mizumatsu S, Fike JR, et al. Irradiation induces neural precursor-cell dysfunction[J]. Nat Med, 2002, 8(9): 955-962. DOI: 10.1038/nm749.
|
[15] |
Monje ML, Toda H Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis[J]. Science, 2003, 302(5651): 1760-1765. DOI: 10.1126/science.1088417.
|
[16] |
Alexander TC, Butcher H, Krager K, et al. Behavioral Effects of Focal Irradiation in a Juvenile Murine Model[J]. Radiat Res, 2018, 189(6): 605-617. DOI: 10.1667/rr14847.1.
|
[17] |
Yang B, Ren BX, Tang FR. Prenatal irradiation-induced brain neuropathology and cognitive impairment[J]. Brain Dev, 2017, 39(1): 10-22. DOI: 10.1016/j.braindev.2016.07.008.
|