[1] |
Cima RR, Kollengode A, Garnatz J, et al. Incidence and characteristics of potential and actual retained foreign object events in surgical patients[J]. J Am Coll Surg, 2008, 207(1): 80-87. DOI:10.1016/j.jamcollsurg. 2007. 12.047.
|
[2] |
O'Brien L, Eyster KM, Hansen KA. Retained foreign body: “needle in a haystack”[J]. J Patient Saf, 2015, 11(4): 228-229. DOI: 10.1097/PTS.0000000000000078.
|
[3] |
Su YX, Nan GX. Using methylene blue as a marker to find and remove tiny metallic foreign bodies embedded in the soft tissues of children: a randomised controlled trial[J]. Int J Surg, 2016, 29: 43-48. DOI: 10.1016/j.ijsu.2016.03.018.
|
[4] |
Teltzrow T, Hallermann C, Müller S, et al. Foreign body-induced angiosarcoma 60 years after a shell splinter injury[J]. Mund Kiefer Gesichtschir, 2006, 10(6): 415-418. DOI: 10.1007/s10006-006-0026-4.
|
[5] |
Xing GF, Shi CW, Qian HX, et al. Novel methods of removing metallic foreign body from human soft tissue: a report of 7390 cases[J]. J Surg Res, 2013, 183(1): 337-340. DOI: 10.1016/j.jss.2012.12.018.
|
[6] |
He B, Xu C, Mao Y, et al. A novel navigation system to guide metallic foreign body extraction[J]. Int J Comput Assist Radiol Surg, 2016, 11(11): 2105-2110. DOI: 10.1007/s11548-016-1424-1.
|
[7] |
Lorenz KJ, Böckers A, Fassnacht U, et al. Implementation of a miniaturised navigation system in head and neck surgery for the detection and removal of foreign bodies[J]. Eur Arch Otorhinolaryngol, 2017, 274(1): 553-559. DOI: 10.1007/s00405-016-4212-1.
|
[8] |
Zhang GD, Yu ZX, Chen XH, et al. Accurate placement of cervical pedicle screws using 3D-printed navigational templates: an improved technique with continuous image registration[J]. Orthopade, 2018, 47(5): 428-436. DOI: 10.1007/s00132-017-3515-2.
|
[9] |
Yu ZX, Zhang GD, Chen XH, et al. Application of a novel 3D drill template for cervical pedicle screw tunnel design: a cadaveric study[J]. Eur Spine J, 2017, 26(9): 2348-2356. DOI: 10.1007/s00586-017-5118-3.
|
[10] |
Xu J, He ZP, Zhang GD, et al. An experimental study on the digital precision of internal fixation via the sinus tarsi approach for calcaneal fractures[J]. J Orthop Surg (Hong Kong), 2019, 27(1): 2309499019 834072. DOI: 10.1177/2309499019834072.
|
[11] |
Zhu QH, Chen Y, Zeng QL, et al. Percutaneous extraction of deeply-embedded radiopaque foreign bodies using a less-invasive technique under image guidance[J]. J Trauma Acute Care Surg, 2012, 72(1): 302-305. DOI: 10.1097/TA.0b013e31822c1c50.
|
[12] |
Tantray MD, Rather A, Manaan Q, et al. Role of ultrasound in detection of radiolucent foreign bodies in extremities[J]. Strategies Trauma Limb Reconstr, 2018, 13(2): 81-85. DOI: 10.1007/s11751-018-0308-z.
|
[13] |
Ma H, Jh K. Diagnostic X-rRay exposure and thyroid cancer risk: systematic review and meta-analysis[J]. Thyroid, 2018, 28(2): 220-228. DOI: 10.1089/thy.2017.0159.
|
[14] |
Hendee WR. History, current status, and trends of radiation protection standards[J]. Med Phys, 1993, 20(5): 1303-1314. DOI: 10.1118/1.597153.
|
[15] |
Marant Micallef C, Shield KD, Vignat J, et al. The risk of cancer attributable to diagnostic medical radiation: estimation for France in 2015[J]. Int J Cancer, 2019, 144(12): 2954-2963. DOI: 10.1002/ijc.32048.
|
[16] |
Lim H, Choi J, Kim JH, et al. Estimation of cancer incidence and mortality risks attributed to diagnostic medical radiation exposure in Korea, 2013[J]. J Korean Med Sci, 2018, 33(29): e211. DOI: 10.3346/jkms.2018.33.e211.
|
[17] |
Qian HX, Qin XJ, Xing GF, et al. Comparison of the efficacy and characteristics of metallic foreign body extraction by incision surgery and x-ray guided forceps after body-surface projection positioning: a STROBE-compliant article[J]. Medicine (Baltimore), 2018, 97(35): e12116. DOI: 10.1097/MD.0000000000012116.
|