[1] |
Feng S, Tian W, Sun Y, et al. Effect of robot-assisted surgery on lumbar pedicle screw internal fixationin patients with osteoporosis[J]. World Neurosurg, 2019, 125:e1057-e1062. DOI:10.1016/j.wneu.2019.01.243.
|
[2] |
Wang W, Liu C, Li J, et al. Comparison of the fenestrated pedicle screw and conventional pedicle screw in minimally percutaneous fixation for the treatment of spondylolisthesis with osteoporotic spine[J]. Clin Neurol Neurosurg, 2019, 183: 105377. DOI:10.1016/j.clineuro. 2019. 105377.
|
[3] |
Lee DG, Park CK, Lee DC. Clinical and radiological comparison of 2 level anterior lumbar interbody fusion with posterolateral fusion and percutaneous pedicle screw in elderly patients with osteoporosis[J]. Medicine (Baltimore), 2020, 99(10): e19205. DOI: 10.1097/MD.00000 00000019205.
|
[4] |
Tarukado K, Tono O, Doi T. Simultaneous use of both bilateral in tralaminar and pedicle screw for C2 stabilization [J]. Asian Spine J, 2015,9(5): 789-793. DOI:10.4184/asj.2015.9.5.789.
|
[5] |
唐晓军, 曹奇, 陈亮元, 等. 枢椎椎弓根螺钉进钉点及植钉方式的解剖研究[J]. 中国修复重建外科杂志, 2015, 29(2):175-178. DOI:10.7507/1002-1892.20150038.
|
[6] |
Byeon Y, Lee BJ, Park JH. Freehand placement of the C1 pedicle screw using direct visualization of the pedicle anatomy and serial dilatation[J]. Korean J Neurotrauma, 2020, 16(2):207-215. DOI:10.13004/kjnt. 2020.16.e15.
|
[7] |
姜泽威, 汤舒婷, 周纪平, 等. 3D打印导板辅助与徒手寰枢椎弓根钉置入比较[J].中国矫形外科杂志, 2021, 29(10):880-884. DOI:10.3977/j.issn.1005-8478.2021.10.04.
|
[8] |
Wang XD, Feng MS, Hu YC. Establishment and finite element analysis of a three-dimensional dynamic model of upper cervical spine instability[J].Orthop Surg, 2019, 11(3):500-509. DOI:10.1111/os.12474.
|
[9] |
Wang HW, Ma LP, Yin YH, et al. Biomechanical rationale for the development of atlantoaxial instability and basilar invagination in patients with occipitalization of the atlas: a finite element analysis[J]. World Neurosurg, 2019,127:e474-e479. DOI:10.1016/j.wneu. 2019. 03. 174.
|
[10] |
Liao JC. Impact of osteoporosis on different type of short-segment posterior instrumentation for thoracolumbar burst fracture- a finite element analysis[J]. World Neurosurg, 2020, 139:e643-e651. DOI:10.1016/j.wneu.2020.04.056.
|
[11] |
Nobakhti S, Shefelbine SJ. On the relation of bone mineral density and the elastic modulus in healthy and pathologic bone[J]. Curr Osteoporos Rep, 2018, 16(4):404-410. DOI: 10.1007/s11914-018-0449-5.
|
[12] |
Brolin K, Halldin P. Development of a finite element model of the upper cervical spineand a parameter study of ligament characteristics[J]. Spine, 2004, 29(4):376-385. DOI: 10.1097/01.BRS.0000090820. 99182.2D.
|
[13] |
Lasswell TL, Cronin DS, Medley JB, et al. Incorporating ligament laxity in a finite element model for the upper cervical spine[J]. Spine J, 2017, 17(11):1755-1764. DOI:10.1016/j.spinee.2017.06.040.
|
[14] |
Zheng Y, Wang J, Liao S, et al. Biomechanical evaluation of a novel integrated artificial axis: a finite element study [J]. Medicine(Baltimore),2017, 96(47):e8597.DOI:10.1097/MD.0000000000008597.
|
[15] |
Panjabi M, Dvorak J, Duranceau J, et al. Three-dimensional movements of the upper cervical spine [J]. Spine (Phila Pa1976), 1988, 13(7): 726-730. DOI: 10.1097/00007632-198807000-00003.
|
[16] |
陈树金, 马向阳, 杨进城, 等.有限元法分析寰-枢椎椎弓根螺钉内固定的生物力学变化[J]. 中国组织工程研究, 2018, 22(31): 4970-4974. DOI: 10.3969/j.issn.2095-4344.0362.
|
[17] |
Goel A, Laheri V. Plate and screw fixation for atlanto-axial subluxation[J]. Acta Neurochirurgica, 1994, 129(129):47-53. DOI: 10.1007/BF01400872.
|
[18 ] |
Sai Kiran NA, Sivaraju L, Vidyasagar K, et al. Safety and accuracy of anatomic and lateral fluoroscopic-guided placement of C2 pars/pedicle screws and C1 lateral mass screws, and freehand placement of C2 laminar screws[J]. World Neurosurg, 2018,118:e304-e315. DOI:10.1016/j.wneu.2018.06.184.
|
[19] |
Wang Y, Wang C, Yan M. Clinical outcomes of atlantoaxial dislocation combined with high-riding vertebral artery using C2 translaminar screws[J]. World Neurosurg, 2019, 122:e1511-e1518. DOI:10.1016/j.wneu.2018.11.092.[20] Wright NM. Posterior C2 fixation using bilateral,crossing C2 laminar screws:case series and technical note [J]. J Spinal Disord Tech, 2004, 17(2):158-162. DOI: 10.1097/00024720-200404000-00014.
|
[21] |
邓轩赓, 熊小明, 石华刚, 等. 枢椎椎板钉治疗可复性寰枢椎脱位的近期疗效[J]. 中国修复重建外科杂志, 2019, 33(11):1419-1423. DOI:10.7507/1002-1892.201902026.
|
[22] |
Ikuta K, Sakamoto K, Hotta K, et al. Occipital bone erosion induced by C1 pedicle screw as a late complication of atlantoaxial fixation: a case report and literature review[J].Spine Deform, 2021, 9(2):621-625. DOI: 10.1007/s43390-020-00222-1.
|
[23] |
Clifton W, Nottmeier E, Edwards S, et al. Development of a novel 3D printed phantom for teaching neurosurgical trainees the freehand technique of C2 laminar screw placement[J]. World Neurosurg, 2019, 129: e812-e820. DOI: 10.1016/j.wneu.2019.06.038.
|
[24] |
Matsukawa K, Yato Y, Imabayashi H, et al. Impact of screw diameter and length on pedicle screw fixation strength in osteoporotic vertebrae: a finite element analysis[J]. Asian Spine J, 2021,15(5):566-574. DOI:10.31616/asj.2020.0353.
|
[25] |
Okuyama K,Sato K,Abe E, et al. Stability of transpedicle screwing for the osteoporotic spine:an in vitro study of the mechanical stability[J]. Spine, 1993, 18(15):2240-2245. DOI:10.1097/00007632-199311 000- 00016.
|
[26] |
Panagiotopoulou O. Finite element analysis(FEA): applying an engineering method to functional morphology in anthropology and human biology[J]. Ann Hum Biol, 2009, 36(5):609-623. DOI:10.1080/03014460903019879.
|
[27] |
Kothari MK, Dalvie SS, Gupta S, et al. The C2 pedicle width, pars length, and laminar thickness in concurrent ipsilateral ponticulus posticus and high-riding vertebral artery: a radiological computed tomography scan-based study[J]. Asian Spine J, 2019, 13(2): 290-295. DOI: 10.31616/asj.2018.0057.
|
[28] |
Formentin C, Andrade EJ, Maeda FL, et al. Axis screws: results and complications of a large case series[J]. Rev Assoc Med Bras(1992), 2019, 65(2): 198-203. DOI: 10.1590/1806-9282.65.2.198.
|