中国临床解剖学杂志 ›› 2022, Vol. 40 ›› Issue (2): 242-245.doi: 10.13418/j.issn.1001-165x.2022.2.24
朱正亚, 刘少喻*
收稿日期:
2021-04-18
出版日期:
2022-03-25
发布日期:
2022-04-12
通讯作者:
刘少喻,教授,主任医师,博士生导师,E-mail:gzsyliu @tom.com
作者简介:
朱正亚(1992-),男,江苏徐州人,博士在读,主要从事脊柱外科方面的研究,E-mail:zhuzhy27@mail2.sysu.edu.cn
基金资助:
Zhu Zhengya, Liu Shaoyu*
Received:
2021-04-18
Online:
2022-03-25
Published:
2022-04-12
中图分类号:
朱正亚, 刘少喻. 机械力学刺激诱导韧带肌腱异位骨化形成机制的研究进展[J]. 中国临床解剖学杂志, 2022, 40(2): 242-245.
Zhu Zhengya, Liu Shaoyu. Research progress of the mechanism of mechanical stimulation induced heterotopic ossification of ligament and tendon[J]. Chinese Journal of Clinical Anatomy, 2022, 40(2): 242-245.
[1] | Zhang Q, Zhou D, Wang H, et al. Heterotopic ossification of tendon and ligament[J]. J Cell Mol Med, 2020, 24(10): 5428-5437. DOI: 10.1111/jcmm.15240. |
[2] | Ramirez DM, Ramirez MR, Reginato AM, et al. Molecular and cellular mechanisms of heterotopic ossification[J]. Histol Histopathol, 2014, 29(10): 1281-1285. DOI: 10.14670/HH-29.1281. |
[3] | Nishida N, Kanchiku T, Kato Y, et al. Cervical ossification of the posterior longitudinal ligament: Biomechanical analysis of the influence of static and dynamic factors[J]. J Spinal Cord Med, 2015, 38(5): 593-598. DOI: 10.1179/2045772314Y.0000000221. |
[4] | Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal stem cell differentiation[J]. J Anat, 2015, 227(6): 717-731. DOI: 10.1111/joa.12243. |
[5] | Kim SI, Ha KY, Lee JW, et al. Prevalence and related clinical factors of thoracic ossification of the ligamentum flavum-a computed tomography-based cross-sectional study[J]. Spine J, 2018, 18(4): 551-557. DOI: 10.1016/j.spinee.2017.08.240. |
[6] | Liang HF, Liu GB, Lu SY, et al. Epidemiology of ossification of the spinal ligaments and associated factors in the Chinese population: a cross-sectional study of 2000 consecutive individuals[J]. BMC Musculoskelet Disord, 2019, 20(1): 253. DOI: 10.1186/s12891-019-2569-1. |
[7] | Hirabayashi K, Miyakawa J, Satomi K, et al. Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament[J]. Spine (Phila Pa 1976), 1981, 6(4): 354-364. DOI: 10.1097/00007632-198107000-00005. |
[8] | Kang MS, Kim KH, Park JY, et al. Progression of cervical ossification of posterior longitudinal ligament after laminoplasty or laminectomy with posterior Ffixation[J]. Clin Spine Surg, 2019, 32(9): 363-368. DOI: 10.1097/BSD.0000000000000898. |
[9] | Katsumi K, Izumi T, Ito T, et al. Posterior instrumented fusion suppresses the progression of ossification of the posterior longitudinal ligament: a comparison of laminoplasty with and without instrumented fusion by three-dimensional analysis[J]. Eur Spine J, 2016, 25(5): 1634-1640. DOI: 10.1007/s00586-015-4328-9. |
[10] | Matsunaga S, Sakou T, Taketomi E, et al. Effects of strain distribution in the intervertebral discs on the progression of ossification of the posterior longitudinal ligaments[J]. Spine (Phila Pa 1976), 1996, 21(2): 184-189. DOI: 10.1097/00007632-199601150-00005. |
[11] | Khuyagbaatar B, Kim K, Park WM, et al. Increased stress and strain on the spinal cord due to ossification of the posterior longitudinal ligament in the cervical spine under flexion after laminectomy[J]. Proc Inst Mech Eng H, 2017, 231(9): 898-906. DOI: 10.1177/09544119177 18222. |
[12] | Goldberg G, Stockhausen S. Atlas of anatomy, general anatomy and musculoskeletal system[J]. Am J Phys Med Rehabil, 2015, 94(2): e23-e24. |
[13] | Hou XF, Sun CG, Liu XG, et al. Clinical features of thoracic spinal stenosis-associated myelopathy: a retrospective analysis of 427 cases[J]. Clin Spine Surg, 2016, 29(2): 86-89. DOI: 10.1097/BSD. 00000000 00000081. |
[14] | Ando K, Imagama S, Ito Z, et al. Predictive factors for a poor surgical outcome with thoracic ossification of the ligamentum flavum by multivariate analysis: a multicenter study[J]. Spine (Phila Pa 1976), 2013, 38(12): E748-754. DOI: 10.1097/BRS.0b013e31828ff736. |
[15] | Ando K, Imagama S, Ito Z, et al. Progressive relapse of ligamentum flavum ossification following decompressive surgery[J]. Asian Spine J, 2014, 8(6): 835-839. DOI: 10.4184/asj.2014.8.6.835. |
[16] | Ahmadi SA, Suzuki A, Terai H, et al. Anatomical analysis of the human ligamentum flavum in the thoracic spine: clinical implications for posterior thoracic spinal surgery[J]. J Orthop Sci, 2019, 24(1): 62-67. DOI: 10.1016/j.jos.2018.08.023. |
[17] | Li Y, Jacox LA, Little SH, et al. Orthodontic tooth movement: the biology and clinical implications[J]. Kaohsiung J Med Sci, 2018, 34(4): 207-214. DOI: 10.1016/j.kjms.2018.01.007. |
[18] | Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt[J]. Eur J Orthod, 2006, 28(3): 221-240. DOI: 10.1093/ejo/cjl001. |
[19] | Feller L, Khammissa RAG, Schechter I, et al. Periodontal biological events associated with orthodontic tooth movement: the biomechanics of the cytoskeleton and the extracellular matrix[J]. Scientific World Journal, 2015, 2015: 894123. DOI: 10.1155/2015/894123. |
[20] | Ko JWK, Tompson JD, Sholder DS, et al. Heterotopic ossification of the long head of the triceps after reverse total shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2016, 25(11): 1810-1815. DOI: 10.1016/j.jse.2016.03.006. |
[21] | Olsen E, Endrizzi D, Stephenson M, et al. Characteristic heterotopic ossification of the proximal humerus after total shoulder arthroplasty[J]. Skeletal Radiol, 2021, 50(5): 973-979. DOI: 10.1007/s00256-020-03653-z. |
[22] | Magnusson SP, Agergaard AS, Couppé C, et al. Heterotopic ossification after an achilles tendon rupture cannot be prevented by early functional rehabilitation: a cohort study[J]. Clin Orthop Relat Res, 2020, 478(5): 1101-1108. DOI: 10.1097/CORR.0000000000001085. |
[23] | Kirchgesner T, Larbi A, Omoumi P, et al. Drug-induced tendinopathy: from physiology to clinical applications[J]. Joint Bone Spine, 2014, 81(6): 485-492. DOI: 10.1016/j.jbspin.2014.03.022. |
[24] | Tsukamoto N, Maeda T, Miura H, et al. Repetitive tensile stress to rat caudal vertebrae inducing cartilage formation in the spinal ligaments: a possible role of mechanical stress in the development of ossification of the spinal ligaments[J]. J Neurosurg Spine, 2006, 5(3): 234-242. DOI: 10.3171/spi.2006.5.3.234. |
[25] | Petri M, Lu P, Omar M, et al. In vivo heterotopic culturing of prefabricated tendon grafts with mechanical stimulation in a sheep model[J]. Knee, 2018, 25(3): 381-391. DOI: 10.1016/j.knee. 2018. 02.006. |
[26] | Karner CM, Lee SY, Long F. Bmp induces osteoblast differentiation through both smad4 and mTORC1 signaling[J]. Mol Cell Biol, 2017, 37(4): e00253-16. DOI: 10.1128/MCB.00253-16. |
[27] | Chen YP, Gao H, Yin QS, et al. ER stress activating ATF4/CHOP-TNF-α signaling pathway contributes to alcohol-induced disruption of osteogenic lineage of multipotential mesenchymal stem cell[J]. Cell Physiol Biochem, 2013, 32(3): 743-754. DOI: 10.1159/000354476. |
[28] | Shi L, Miao JH, Chen DY, et al. Endoplasmic reticulum stress regulates mechanical stress-induced ossification of posterior longitudinal ligament[J]. Eur Spine J, 2019, 28(10): 2249-2256. DOI: 10.1007/s00586-019-06074-2. |
[29] | Chen Y, Yang HS, Miao JH, et al. Roles of the endoplasmic reticulum stress transducer OASIS in ossification of the posterior longitudinal ligament[J]. Clin Spine Surg, 2017, 30(1): E19-E24. DOI: 10.1097/BSD.0b013e3182908c21. |
[30] | Shi L, Shi GD, Li TF, et al. The endoplasmic reticulum stress response participates in connexin 43-mediated ossification of the posterior longitudinal ligament[J]. Am J Transl Res, 2019, 11(7): 4113-4125. PMID: 31396322. |
[31] | Yang SY, Wei FL, Hu LH, et al. PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force[J]. Cell Signal, 2016, 28(8): 880-886. DOI: 10.1016/j.cellsig.2016.04.003. |
[32] | Chen D, Chen Y, Li TF, et al. Role of Cx43-mediated NFκβ signaling Ppathway in ossification of posterior longitudinal ligament: an in vivo and in vitro study[J]. Spine (Phila Pa 1976), 2017, 42(23): E1334-E1341. DOI: 10.1097/BRS.0000000000002165. |
[33] | Yang HS, Lu XH, Chen DY, et al. Mechanical strain induces Cx43 expression in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament[J]. Eur Spine J, 2011, 20(9): 1459-1465. DOI: 10.1007/s00586-011-1767-9. |
[34] | Yang HS, Lu XH, Chen DY, et al. Upregulated expression of connexin43 in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament[J]. Spine (Phila Pa 1976), 2011, 36(26): 2267-2274. DOI: 10.1097/BRS. 0b013e 31820ccfc6. |
[35] | Agarwal S, Loder SJ, Cholok D, et al. Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon[J]. Stem Cells, 2017, 35(3): 705-710. DOI: 10.1002/stem.2515. |
[36] | Dey D, Bagarova J, Hatsell SJ, et al. Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification[J]. Sci Transl Med, 2016, 8(366): 366ra163. DOI: 10.1126/scitranslmed.aaf1090. |
[37] | Olmsted-Davis EA, Salisbury EA, Hoang D, et al. Progenitors in peripheral nerves launch heterotopic ossification[J]. Stem Cells Transl Med, 2017, 6(4): 1109-1119. DOI: 10.1002/sctm.16-0347. |
[38] | Kisiday JD, Frisbie DD, McIlwraith CW, et al. Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines[J]. Tissue Eng Part A, 2009, 15(10): 2817-2824. DOI: 10.1089/ten.TEA.2008.0357. |
[39] | Pelaez D, Huang CYC, Cheung HS. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds[J]. Stem Cells Dev, 2009, 18(1): 93-102. DOI: 10.1089/scd.2008.0030. |
[40] | Kupcsik L, Stoddart MJ, Li Z, et al. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering[J]. Tissue Eng Part A, 2010, 16(6): 1845-1855. DOI: 10.1089/ten.TEA.2009.0531. |
[41] | Huang CYC, Hagar KL, Frost LE, et al. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells[J]. Stem Cells, 2004, 22(3): 313-323. DOI: 10.1634/stemcells.22-3-313. |
[42] | Haugh MG, Meyer EG, Thorpe SD, et al. Temporal and spatial changes in cartilage-matrix-specific gene expression in mesenchymal stem cells in response to dynamic compression[J]. Tissue Eng Part A, 2011, 17(23-24): 3085-3093. DOI 10.1089/ten.tea.2011.0198. |
[43] | Thorpe SD, Buckley CT, Vinardell T, et al. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation[J]. Ann Biomed Eng, 2010, 38(9): 2896-2909. DOI: 10.1007/s10439-010-0059-6. |
[44] | Thorpe SD, Buckley CT, Steward AJ, et al. European Society of Biomechanics S.M. Perren Award 2012: the external mechanical environment can override the influence of local substrate in determining stem cell fate[J]. J Biomech, 2012, 45(15): 2483-2492. DOI: 10.1016/j.jbiomech.2012.07.024. |
[45] | Nakajima H, Watanabe S, Honjoh K, et al. Expression analysis of susceptibility genes for ossification of the posterior longitudinal ligament of the cervical spine in human OPLL-related tissues and a spinal hyperostotic mouse (ttw/ttw)[J]. Spine (Phila Pa 1976), 2020, 45(22): E1460-e1468. DOI: 10.1097/BRS.0000000000003648. |
[46] | LaBonty M, Yelick PC. Animal models of fibrodysplasia ossificans progressiva[J]. Dev Dyn, 2018, 247(2): 279-288. DOI: 10.1002/dvdy.24606. |
[47] | Stanley A, Heo SJ, Mauck RL, et al. Elevated BMP and mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis[J]. J Bone Miner Res, 2019, 34(10): 1894-1909. DOI: 10.1002/jbmr.3760. |
[48] | Haupt J, Stanley A, McLeod CM, et al. ACVR1(R206H) FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification[J]. Mol Biol Cell, 2019, 30(1): 17-29. DOI: 10.1091/mbc.E18-05-0311. |
[49] | Suzuki H, Ito Y, Shinohara M, et al. Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis[J]. Proc Natl Acad Sci U S A, 2016, 113(28): 7840-7845. DOI: 10.1073/pnas.1522054113. |
[50] | Liu H, Xu JY, Jiang RL. Mkx-deficient mice exhibit hedgehog signaling-dependent ectopic ossification in the achilles tendons[J]. J Bone Miner Res, 2019, 34(3): 557-569. DOI: 10.1002/jbmr.3630. |
[1] | 江剑宏, 段仁鹏, 李晓锋. 国人胆道三维重建解剖变异应用研究[J]. 中国临床解剖学杂志, 2024, 42(1): 1-4. |
[2] | 郭红志, 王瑜, 张加琪, 梁海彬, 马梓玮, 冯伟, 吴忧, 司子燚. 血管铸型结合CT三维模型评估先兆子痫胎盘血管结构[J]. 中国临床解剖学杂志, 2024, 42(1): 5-10. |
[3] | 李佳伟, 张静, 李灿然, 兰文杰, 籍庆余, 郭志勇, 张云凤, 刘启, 陈清威, 李筱贺. 蒙古族人群股骨近端解剖参数X线测量[J]. 中国临床解剖学杂志, 2024, 42(1): 11-16. |
[4] | 李琨, 张燕, 郭冉, 郝咪咪, 吴轩宇, 徐艺芳, 王超群, 马文童, 张灵淇, 杨宏宇, 李志军, 张少杰, 王星. 儿童及青少年枕颈角与后枕颈角数字化测量及其临床意义[J]. 中国临床解剖学杂志, 2024, 42(1): 17-20. |
[5] | 李文, 杨思艺, 黄蕾, 卿霁雯, 蒋松涛, 张磊. 基于MRI探讨Lisfranc韧带的形态学特点及临床意义[J]. 中国临床解剖学杂志, 2024, 42(1): 21-25. |
[6] | 李凡凡, 徐阳, 王晓旭. 紫草素调节Nrf2/HO-1信号通路对实验性大鼠肉芽肿性小叶性乳腺炎的治疗作用研究[J]. 中国临床解剖学杂志, 2024, 42(1): 26-32. |
[7] | 王兴航, 丁佳媛, 李放, 包翠芬, 阎丽菁. 人参皂苷Rg1通过抑制NLRP3炎症小体途径减轻氧糖剥夺/复供后小胶质细胞炎症反应[J]. 中国临床解剖学杂志, 2024, 42(1): 33-41. |
[8] | 程莹莹, 武建军, 蔡海燕, 焦旭文, 马江波, 丁银秀. 体外炎性诱导星形胶质细胞激活及功能分析[J]. 中国临床解剖学杂志, 2024, 42(1): 42-46. |
[9] | 祁志, 杨力, 贾秋叶, 陈浩伦, 段兆达, 吴春云. 依达拉奉经MAPKs通路对脂多糖激活的小胶质细胞Sirt3表达调控[J]. 中国临床解剖学杂志, 2024, 42(1): 47-53. |
[10] | 张晶晶, 王洪新. 黄芩苷通过PDGF/P38 MAPK信号通路对肺动脉高压大鼠的保护作用[J]. 中国临床解剖学杂志, 2024, 42(1): 54-58. |
[11] | 乐钦, 陈荣丽, 熊婧熙, 王婷怡, 蔡志恒, 易秋实, 曾心怡. 白芨多糖对大鼠跨区皮瓣choke区的影响[J]. 中国临床解剖学杂志, 2024, 42(1): 59-64. |
[12] | 李笑予, 张磊, 付磊, 李东波, 汪国友. 三步接骨法治疗Sanders Ⅱ型跟骨骨折的有限元研究[J]. 中国临床解剖学杂志, 2024, 42(1): 65-70. |
[13] | 吴研飞, 马剑雄, 卢斌, 王颖, 柏豪豪, 靳洪震, 马信龙. CT后处理技术重建CT值与终板抗压强度的相关性研究[J]. 中国临床解剖学杂志, 2024, 42(1): 71-76. |
[14] | 庄万强, 唐毅, 骆勇刚, 张辉. 关节镜联合胫骨高位截骨术对髌骨位置及髌股关节功能影响的早中期回顾性研究[J]. 中国临床解剖学杂志, 2024, 42(1): 77-82. |
[15] | 罗鹰, 窦伟誉, 吴小杭, 陈璟昆, 彭昌贵, 潘剑英 . 微创海马钢板内固定治疗跟骨骨折并发症的影响因素[J]. 中国临床解剖学杂志, 2024, 42(1): 83-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|