[1] Sun X, Allison C, Wei L, et al. Autism prevalence in China is comparable to Western prevalence[J]. Mol Autism, 2019,10: 7. DOI: 10.1186/s13229-018-0246-0.
[2] Lv M, Ma Q. Autophagy in neurodevelopmental disorders[J]. Adv Exp Med Biol, 2020, 1207: 171-182. DOI: 10.1007/978-981-15-4272-5_11.
[3] Deng Z, Zhou X, Lu JH, et al. Autophagy deficiency in neurode velopmental disorders[J]. Cell Biosci, 2021, 11(1): 214. DOI: 10.1186/s13578-021-00726-x.
[4] Colombo E, Horta G, Roesler MK, et al. The K63 deubiquitinase CYLD modulates autism-like behaviors and hippocampal plasticity by regulating autophagy and mTOR signaling[J]. Proc Natl Acad Sci U S A, 2021, 118(47): e2110755118. DOI: 10.1073/pnas.2110755118.
[5] Hui KK, Tanaka M. Autophagy links MTOR and GABA signaling in the brain[J]. Autophagy, 2019, 15(10): 1848-1849. DOI: 10.1080/15548627.2019.1637643.
[6] Wang X, Ding R, Song Y, et al. Transcutaneous electrical acupoint stimulation in early life changes synaptic plasticity and improves symptoms in a valproic acid-Induced rat model of autism[J]. Neural Plast, 2020, 2020: 8832694. DOI: 10.1155/2020/8832694.
[7] Rose S, Niyazov DM, Rossignol DA, et al. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder[J]. Mol Diagn Ther, 2018, 22(5): 571-593. DOI: 10.1007/s40291-018-0352-x.
[8] Pacheva I, Ivanov I. Targeted biomedical treatment for autism spectrum disorders[J]. Curr Pharm Des, 2019, 25(41): 4430-4453. DOI: 10.2174/1381612825666191205091312.
[9] Rangaraju V, Lewis TL Jr, Hirabayashi Y, et al. Pleiotropic mitochondria: the influence of mitochondria on neuronal development and disease[J]. J Neurosci, 2019, 39(42): 8200-8208. DOI: 10.1523/JNEUROSCI.1157-19.2019.
[10]Napoli E, Song G, Panoutsopoulos A, et al. Beyond autophagy: a novel role for autism-linked Wdfy3 in brain mitophagy[J]. Sci Rep, 2018, 8(1): 11348. DOI: 10.1038/s41598-018-29421-7.
[11]Nnah IC, Wang B, Saqcena C, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy[J]. Autophagy, 2019, 15(1): 151-164. DOI: 10.1080/15548627.2018.1511504.
[12]Napolitano G, Esposito A, Choi H, et al. mTOR-dependent phosphorylation controls TFEB nuclear export[J]. Nat Commun, 2018, 9(1): 3312. DOI: 10.1038/s41467-018-05862-6.
[13]DeSpenza T Jr, Carlson M, Panchagnula S, et al. PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets[J]. Trends Neurosci, 2021, 44(12): 961-976. DOI: 10.1016/j.tins.2021.08.007.
[14]Lieberman OJ, Cartocci V, Pigulevskiy I, et al. mTOR suppresses macroautophagy during striatal postnatal development and is hyperactive in mouse models of autism spectrum disorders[J]. Front Cell Neurosci, 2020, 14: 70. DOI: 10.3389/fncel.2020.00070.
[15]Wang W, Li J, Tan J, et al. Endonuclease G promotes autophagy by suppressing mTOR signaling and activating the DNA damage response[J]. Nat Commun, 2021, 12(1): 476. DOI: 10.1038/s41467-020-20780-2.
[16]Jin C, Kim S, Kang H, et al. Shank3 regulates striatal synaptic abundance of Cyld, a deubiquitinase specific for Lys63-linked polyubiquitin chains[J]. J Neurochem, 2019, 150(6): 776-786. DOI: 10.1111/jnc.14796.
[17]Rademacher S, Eickholt BJ. PTEN in autism and neurodevelopmental disorders[J]. Cold Spring Harb Perspect Med, 2019, 9(11): a036780. DOI: 10.1101/cshperspect.a036780.
[18]Chen CJ, Sgritta M, Mays J, et al. Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities associated with pten-deficiency[J]. Nat Med, 2019, 25(11): 1684-1690. DOI: 10.1038/s41591-019-0608-y.
[19]Zhu JW, Zou MM, Li YF, et al. Absence of TRIM32 leads to reduced GABAergic interneuron generation and autism-like behaviors in mice via suppressing mTOR signaling[J]. Cereb Cortex, 2020, 30(5): 3240-3258. DOI: 10.1093/cercor/bhz306.
[20]Xie C, Liu S, Wu B, et al. miR-19 promotes cell proliferation, invasion, migration, and EMT by inhibiting SPRED2-mediated autophagy in osteosarcoma cells[J]. Cell Transplant, 2020, 29: 963689720962460. DOI: 10.1177/0963689720962460.
[21]Jiang K, Liu M, Lin G, et al. Tumor suppressor Spred2 interaction with LC3 promotes autophagosome maturation and induces autophagy-dependent cell death[J]. Oncotarget, 2016, 7(18): 25652-25667. DOI: 10.18632/oncotarget.8357.
[22]Zhao R, Zhu T, Liu Q, et al. The autism risk gene CNTN4 modulates dendritic spine formation[J]. Hum Mol Genet, 2021, 31(2): 207-218. DOI: 10.1093/hmg/ddab233.
[23]Choi H, Kim IS, Mun JY. Propionic acid induces dendritic spine loss by MAPK/ERK signaling and dysregulation of autophagic flux[J]. Mol Brain, 2020, 13(1): 86. DOI: 10.1186/s13041-020-00626-0.
[24]Lu Y, Shen H, Huang W, et al. Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance[J]. Cell Death Discov, 2021, 7(1): 359. DOI: 10.1038/s41420-021-00747-y.
[25]Wei G, Gao N, Chen J, et al. Erk and MAPK signaling is essential for intestinal development through Wnt pathway modulation[J]. Development, 2020, 147(17): dev185678. DOI: 10.1242/dev.185678.
[26]Bankston AN, Forston MD, Howard RM, et al. Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination[J]. Glia, 2019, 67(9): 1745-1759. DOI: 10.1002/glia.23646.
[27]Ten Bosch G, Bolk J, 't Hart BA, et al. Multiple sclerosis is linked to MAPKERK overactivity in microglia[J]. J Mol Med (Berl), 2021, 99(8): 1033-1042. DOI: 10.1007/s00109-021-02080-4.
[28]Iroegbu JD, Ijomone OK, Femi-Akinlosotu OM, et al. ERK/MAPK signalling in the developing brain: perturbations and consequences[J]. Neurosci Biobehav Rev, 2021, 131: 792-805. DOI: 10.1016/j.neubiorev.2021.10.009.
[29]Mi R, Ma J, Zhang D, et al. Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model[J]. J Genet Genomics, 2009, 36(6): 355-361. DOI: 10.1016/S1673-8527(08)60124-1.
|