[1] Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation[J]. Clin Orthop Relat Res, 1984, 25(189):125-141.
[2] Kaneyama S, Sugawara T, Sumi M. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system[J]. Spine (Phila Pa 1976), 2015, 40(6): E341-348.
[3] Ledonio CG, Polly DW, Vitale MG, et al. Pediatric pedicle screws: comparative effectiveness and safety: a systematic literature review from the Scoliosis Research Society and the Pediatric Orthopaedic Society of North America task force[J]. J Bone Joint Surg Am, 2011, 93(13):1227-1234.
[4] Kotani Y, Cunningham BW, Abumi K, et al. Biomechanical analysis of cervical stabilization systems. An assessment of transpedicular screw fixation in the cervical spine[J]. Spine (Phila Pa 1976), 1994,19(22):2529-2539.
[5] Jones EL, Heller JG, Silcox DH, et al. Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison[J]. Spine (Phila Pa 1976), 1997, 22(9):977-982.
[6] Kantelhardt SR, Keric N, Conrad J, et al. Minimally invasive instrumentation of uncomplicated cervical fractures[J]. Eur Spine J, 2016, 25(1):127-133.
[7] Kim CW, Lee YP, Taylor W, et al. Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery[J]. Spine J, 2008, 8(4):584-590.
[8] Holly LT, Schwender JD, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications[J]. Neurosurg Focus, 2006, 20(3):E6.
[9] Lonjon N, Chan-Seng E, Costalat V, et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis[J]. Eur Spine J, 2016, 25(3):947-955.
[10]Rajasekaran S, Tubaki VR, Shetty AP. Results of direct repair of type 2 hangman fracture using Iso-C3D navigation: 20 cases[J]. J Spinal Disord Tech, 2012, 25(5): E134-139.
[11]刘景堂, 刘兴炎, 唐天驷, 等. 下颈椎椎弓根螺钉内固定相关参数的解剖学和影像学测量[J]. 中国脊柱脊髓杂志, 2009, 19(07):535-539.
[12]Kim CW. Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery[J]. Spine (Phila Pa 1976), 2010, 35(26 Suppl): S281-286.
[13]Fan S, Hu Z, Zhao F, et al. Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach[J]. Eur Spine J, 2010, 19(2):316-324.
[14]Foley KT, Gupta SK, Justis JR, et al. Percutaneous pedicle screw fixation of the lumbar spine[J]. Neurosurg Focus, 2001, 10(4): E10.
[15]Sun X, Murgatroyd AA, Mullinix KP, et al. Biomechanical and anatomical considerations in lumbar spinous process fixation--an in vitro human cadaveric model[J]. Spine J, 2014,14(9): 2208-2215.
[16]Aoude AA, Fortin M, Figueiredo R, et al. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review[J]. Eur Spine J, 2015, 24(5): 990-1004.
[17]李义凯, 刘晓华, 李鉴轶. 颈椎棘突的形态学特征及在颈部推拿中的临床意义[J]. 中国临床解剖学杂志, 2003, 21(01):25-26.
[18]Ran B, Li Q, Yu B, et al. Morphometry of lumbar spinous process via three dimensional CT reconstruction in a Chinese population[J]. Int J Clin Exp Med, 2015, 8(1):1129-1136.
[19]Hasegawa K, Homma T. Morphologic evaluation and surgical simulation of ossification of the posterior longitudinal ligament using helical computed tomography with three-dimensional and multiplanar reconstruction[J]. Spine (Phila Pa 1976), 1997, 22(5):537-543.
[20]Mahesh M. Advances in CT technology and application to pediatric imaging[J]. Pediatr Radiol, 2011, 41(Suppl 2): 493-497.
[21] Mageed M, Berner D, Jülke H, et al. Morphometrical dimensions of the sheep thoracolumbar vertebrae as seen on digitised CT images[J]. Lab Anim Res, 2013, 29(3):138-147.
[22]李严兵, 张元智, 王平山, 等. 数字技术在椎弓根通道设计中的应用[J]. 中国现代医学杂志, 2007, 17(10):1208-1212. |