[1] Rivlin AS, Tator CH. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat[J]. Surg Neurol, 1978, 10(1):38-43.
[2] Zhang Q, Huang C, Meng B, et al. Changes in autophagy proteins in a rat model of spinal cord injury[J]. Chin J Traumatol, 2014,17(4):193-197.
[3] Yeo SJ, Hwang SN, Park SW, et al. Development of a rat model of graded contusive spinal cord injury using a pneumatic impact device[J]. J Korean Med Sci, 2004,19(4): 574-580.
[4] Simard JM, Tsymbalyuk O, Keledjian K, et al. Comparative effects of glibenclamide and riluzole in a rat model of severe cervical spinal cord injury[J]. Exp Neurol, 2012, 233(1): 566-574.
[5] Lee JH, Streijger F, Tigchelaar S, et al. A contusive model of unilateral cervical spinal cord injury using the infinite horizon impactor[J]. J Vis Exp, 2012, (65): 3313
[6] Jaumard NV, Leung J, Gokhale AJ, et al. Relevant Anatomic and Morphological Measurements of the Rat Spine: Considerations for Rodent Models of Human Spine Trauma[J]. Spine (Phila Pa 1976), 2015, 40(20):E1084-E1092.
[7] Kastner A, Gauthier P. Are rodents an appropriate pre-clinical model for treating spinal cord injury? Examples from the respiratory system[J]. Exp Neurol, 2008, 213(2):249-256.
[8] Tator CH. Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations[J]. Neurosurgery, 2006, 59(5):957-987.
[9] Sparrey CJ, Salegio EA, Camisa W, et al. Mechanical design and analysis of a unilateral cervical spinal cord contusion injury model in non-human primates[J]. J Neurotrauma, 2016, 33(12):1136-1149.
[10] Salegio EA, Bresnahan JC, Sparrey CJ, et al. A unilateral cervical spinal cord contusion injury model in non-human primates (Macaca mulatta)[J]. J Neurotrauma, 2016, 33(5):439-459.
[11] Ma Z, Zhang YP, Liu W, et al. A controlled spinal cord contusion for the rhesus macaque monkey[J]. Exp Neurol, 2016, 279:261-273.
[12]Guizar-Sahagun G, Grijalva I, Hernandez-Godinez B, et al. New approach for graded compression spinal cord injuries in Rhesus macaque: method feasibility and preliminary observations[J]. J Med Primatol, 2011, 40(6):401-413.
[13] Anderson KD. Targeting recovery: priorities of the spinal cord-injured population[J]. J Neurotrauma, 2004, 21(10):1371-1383.
[14] Ozawa H, Wu ZJ, Tanaka Y, et al. Morphologic change and astrocyte response to unilateral spinal cord compression in rabbits[J]. J Neurotrauma, 2004, 21(7):944-955.
[15] Marquardt G, Setzer M, Theisen A, et al. Experimental subacute spinal cord compression: correlation of serial S100B and NSE serum measurements, histopathological changes, and outcome[J]. Neurol Res, 2011, 33(4): 421-426.
[16] 姜杰,丁寅,周剑,等. 大鼠颈椎骨折错位致脊髓损伤模型的继发性损伤研究[J]. 中国临床解剖学杂志, 2013,31(2):165-169.
[17] 周剑,王晓萌,刘祺,等. 脊髓挫伤速度对颈脊髓原发性损伤影响的实验研究[J]. 中国临床解剖学杂志, 2014, 32(2):179-183.
[18] Ma L, Zhang D, Chen W, et al. Correlation between magnetic resonance T2 image signal intensity ratio and cell apoptosis in a rabbit spinal cord cervical myelopathy model[J]. Chin Med J (Engl), 2014, 127(2):305-313. |