[1] Lonner JH, Smith JR, Picard F, et al. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty[J]. Clin Orthop Relat Res, 2015, 473(1):206-212.
[2] Yang JH, Dahuja A, Kim JK, et al. Alignment in knee flexion position during navigation-assisted total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(8):2422-29.
[3] Bugbee WD, Kermanshahi AY, Munro MM, et al. Accuracy of a hand-held surgical navigation system for tibial resection in total knee arthroplasty[J]. Knee,2014, 21(6):1225-1228.
[4] Zhu Z, Li G. An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images[J]. Compute Methods Biomech Biomed Engin, 2012, 15(11):1245-1256.
[5] Ohnishi T, Suzuki M, Kobayashi T, et al. Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization[J]. Radiol Phys Technol, 2013, 6(1):170-179.
[6] Yao J, Yang B, Niu WX, et al. In vivo measurements of patellar tracking and finite helical axis using a static magnetic resonance based methodology [J]. Med Eng Phys, 2014, 36(12):1611-1617.
[7] Asano T, Akagi M, Koike K, et al. In vivo three-dimensional patellar tracking on the femur[J]. Clin Orthop Relat Res, 2003, 8(413):222-232.
[8] Sheehan FT, Derasari A, Brindle TJ, et al. Understanding patellofemoral pain with maltracking in the presence of joint laxity: complete 3D in vivo patellofemoral and tibiofemoral kinematics[J]. J Orthop Res, 2009, 27(5):561-570.
[9] Yin L, Chen K, Guo L, et al. Identifying the Functional Flexion-extension Axis of the Knee: An In-Vivo Kinematics Study[J]. PLoS One, 2015, 10(6): e0128877.
[10]Song S, Mor A, Jaramaz B. HyBAR: hybrid bone-attached robot for joint arthroplasty[J]. Int J Med Robot, 2009, 5(2):223-231.
[11] Wolf A, Jaramaz B, Lisien B, et al. MBARS: mini bone-attached robotic system for joint arthroplasty[J]. Int J Med Robot, 2005, 1(2):101-21. |