[1] Rogers WK, Todd M. Acute spinal cord injury[J]. Best Pract Res Clin Anaesthesiol, 2016, 30(1):27-39.
[2] Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury[J]. Front Cell Neurosci, 2016, 10: 98.
[3] Joers V, Tansey MG, Mulas G, et al. Microglial phenotypes in Parkinson's disease and animal models of the disease[J]. Prog Neurobiol, 2016, 20.
[4] Mathews A, Ohsawa K, Buckland ME, et al. Microglioma in a child - a further case in support of the microglioma entity and distinction from histiocytic sarcoma[J]. Clin Neuropathol, 2016, 35(5):302-313.
[5] Golub R, Cumano A. Embryonic hematopoiesis[J]. Blood Cells Mol Dis, 2013, 51(4):226-231.
[6] Cao SN, Bao XQ, Sun H, et al. Microglial Phagocytosis in the Neurodegenerative Diseases[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2016, 38(2):228-233.
[7] Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain[J]. Neuropathol Appl Neurobiol, 2013, 39(1):3-18.
[8] David S, Greenhalgh AD, Kroner A. Macrophage and microglial plasticity in the injured spinal cord[J]. Neuroscience, 2015, 307:311-318.
[9] Durafourt BA, Moore CS, Zammit DA, et al. Comparison of polarization properties of human adult microglia and blood-derived macrophages[J]. Glia, 2012, 60(5): 717-727.
[10]Michell-Robinson MA, Touil H, Healy LM, et al. Roles of microglia in brain development, tissue maintenance and repair[J]. Brain, 2015, 138(5):1138-1159.
[11]Shechter R, Schwartz M. Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer 'if' but 'how'[J]. J Pathol, 2013, 229(2):332-346.
[12]Chen Z, Trapp BD. Microglia and neuroprotection[J]. Journal of neurochemistry, 2016, 136 (1):10-17.
[13]Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system[J]. Prog Neurobiol. 2015, 131:65-86.
[14]Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment[J]. F1000Prime Rep. 2014, 6:13.
[15]Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury[J]. Brain Res, 2015, 1619:1-11.
[16]Chen Y, Won SJ, Xu Y, et al. Targeting microglial activation in stroke therapy: pharmacological tools and gender effects[J]. Curr Med Chem,2014, 21(19):2146-2155.
[17]Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic[J]. Br J Pharmacol. 2013, 169(2):337-352.
[18]Stirling DP, Cummins K, Mishra M, et al. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury[J]. Brain, 2014, 137(3):707-723.
[19]Guo Y, Zhang H, Yang J, et al. Granulocyte colony-stimulating factor improves alternative activation of microglia under microenvironment of spinal cord injury[J]. Neuroscience. 2013, 238:1-10.
[20]Zanier ER, Pischiutta F, Riganti L, et al. Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma[J]. Neurotherapeutics. 2014, 11(3):679-695.
[21]Zhou HJ, Wang LQ, Xu QS, et al. Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells[J]. Exp Cell Res. 2016, 349(1):60-67.
[22]Papa S, Ferrari R, De Paola M, et al. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury[J]. J Control Release. 2014,174:15-26.
[23]Saxena T, Loomis KH, Pai SB, et al. Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury[J]. ACS Nano, 2015, 9(2):1492-2505. |