[1] Chen J, Zhang Z, Chen X, et al. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology[J]. Journal of Prosthetic Dentistry, 2014, 112(5):1088-1095.
[2] 宿玉成. 口腔种植学[M].北京:人民卫生出版社, 2014:34-35.
[3] Polocorrales L, Latorreesteves M, Ramirezvick J E. Scaffold design for bone regeneration.[J]. Journal of Nanoscience & Nanotechnology, 2014, 14(1):15-56.
[4] Cheng H, Li Y, Huo K, et al. Long lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles[J]. Journal of Biomedical Materials Research Part A, 2014, 102(10):3488-3499.
[5] Park J, Bauer S, Mark K V D, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate.[J]. Nano Letters, 2007, 7(6):1686-1691.
[6] Otawa N, Sumida T, Kitagaki H, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Modeling accuracy of titanium products constructed with selective laser melting[J]. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, 2015, 43(7):1289-1295.
[7] Gong D, Grimes CA, Varghese OK, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2011,16(12):3331-3334.
[8] Oh SH, Finõnes RR, Daraio C, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.[J]. Biomaterials, 2005,26(24):4938-4943.
[9] Oh S, Brammer KS, Li YSJ, et al. Stem cell fate dictated solely by altered nanotube dimension[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7):2130-2135.
[10] Zhao L, Liu L, Wu Z, et al. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation[J]. Biomaterials, 2012,33(9):2629-2641.
[11] Eriberto B, Luca S, Riccardo G, et al. Nanostructured Surfaces of Dental Implants[J]. International Journal of Molecular Sciences, 2013,14(1):1918-1931.
[12] Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure[J]. Journal of Biomedical Materials Research Part A, 2005,74A(1):49-58.
[13] Young-Taeg S. Electrochemical growth behavior, surface properties, and enhancedin vivobone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants[J]. Int J Nanomedicine, 2010, 5(1):87-100.
[14] Rupp F, Scheideler L, Rehbein D, et al. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications[J]. Biomaterials, 2004,25(7-8):1429-1438.
[15] Schwarz F, Ferrari D, Herten M, et al. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs.[J]. Journal of Periodontology, 2007,78(11):2171-2184.
[16] Lavery K, Swain P, Falb D, et al. BMP-2/4 and BMP-6/7 Differentially Utilize Cell Surface Receptors to Induce Osteoblastic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells[J]. Journal of Biological Chemistry, 2008,283(30):20948-20958. |