[1] Einhorn TA. Enhancement of fracture-healing[J]. J Bone Joint Surg Am, 1995, 77(6): 940-956.
[2] Einhorn TA. The cell and molecular biology of fracture healing[J]. Clin Orthop Relat Res, 1998, (355 Suppl): S7-S21.
[3] Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med, 2016, 22(10): 1160-1169.
[4] Nygren H, Bigdeli N, Ilver L. Mg-corrosion, hydroxyapatite, and bone healing[J]. Biointerphases, 2017, 12(2): 02C407.
[5] 张远华, 李敬矿, 刘平胜, 等. 鼠神经生长因子治疗创伤性骨不连临床研究[J]. 中国临床解剖学杂志, 2018, 36(1): 101-104.
[6] Bilgin HM, Çelik F, Gem M, et al. Effects of local vibration and pulsed electromagnetic field on bone fracture: a comparative study[J]. Bioelectromagnetics, 2017, 38(5): 339- 348.
[7] 张殿英, 张晓萌, 郁凯, 等. 重视骨折固定与骨内、外在因素的关系[J]. 中华肩肘外科电子杂志, 2018, 6(02): 81-84.
[8] 李欣, 杨华刚, 陈仲. 骨不连治疗三个重要问题探讨[J]. 中华肩肘外科电子杂志, 2015, 3(04): 250-255.
[9] Harford JS, Dekker TJ, Adams SB. Bone Marrow Aspirate Concentrate for Bone Healing in Foot and Ankle Surgery[J]. Foot Ankle clin, 2016, 21(4): 839-845.
[10]Cook GJ, Blake GM, Marsden PK, et al. Quantification of skeletal kinetic indices in Paget's disease using dynamic 18F-fluoride positron emission tomography[J]. J Bone Miner Res, 2002, 17(5): 854- 859.
[11]Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluorideion with PET[J]. J Nucl Med, 1992, 33(5): 633- 642.
[12] Blau M, Ganatra R, Bender MA. 18 F-fluoride for bone imaging[J]. Semin Nucl Med, 1972, 2(1): 31-37.
[13] Fischer DR. Musculoskeletal imaging using fluoride PET[J]. Semin Nucl Med, 2013, 43(6): 427- 433.
[14] Ullmark G, Sörensen J, Nilsson O. Bone healing of severe acetabular defects after revision arthroplasty[J]. Acta Orthop, 2009, 80(2): 179-183.
[15] 黄禾, 陈跃. 18F-NaF PET/CT在骨良性病变中的临床应用与研究进展[J]. 中国医学影像技术, 2016, 32(3): 457- 460.
[16] 范薇, 杨剑, 夏丽娜. 从“少阳主骨”看少阳对骨之作用机制[J]. 时珍国医国药, 2016, 252(8): 1955-1956.
[17] 杨英昕, 张维斌. 从足少阳主骨所生病论治软组织损伤[J]. 辽宁中医杂志, 2011, 414(11) : 2186- 2187.
[18] 王鸿度, 扶世杰, 陈庄, 等. 电针足少阳经穴对去卵巢大鼠骨质疏松的作用[J]. 中医杂志, 2011, 52(4): 322- 325.
[19] 汪国友. 少阳生骨方对SD大鼠体外软骨细胞培养及在体软骨损伤影响的实验研究[D]. 成都中医药大学, 2013.
[20] 扶世杰, 杨本伍, 舒从科, 等. 少阳生骨方对大鼠在体软骨损伤关节液IL-1β及软骨修复组织Ⅱ型胶原影响的实验研究[J]. 分子诊断与治疗杂志, 2014, 6(3): 191- 197.
[21] 沈骅睿, 李婷, 扶世杰, 等. 少阳生骨方含药血清对促进大鼠体外软骨细胞培养细胞增殖的相关性研究[J]. 成都中医药大学学报, 2013, 36(2): 16-18.
[22]姜溪, 陈芙蓉, 任雷鸣, 等. 注射用复方骨肽的药效学及其作用机制研究[J].现代药物与临床, 2017, 32(6): 961-966.
[23]马洁, 宋燕青. 骨肽注射液的临床应用及其药理作用[J]. 中国生化药物杂志, 2016, 36(2): 16-18.
[24]徐叔云. 药理学实验方法[M]. 北京: 人民卫生出版社, 2002, 203-204.
[25]吴启跃, 马雯, 余正红, 等. 正常和骨质疏松模型动物不同部位及不同器官摄取18F-NaF的差异对骨代谢评估的意义[J]. 中国组织工程研究与临床康复, 2007, 283(27): 5346-5349.
[26]Zhu Y, Chen Y, Huang Z. Unsuspected metastatic ovarian cancer revealed by 18F-NaF PET/CT performed to evaluate lower-back pain[J]. Clin Nucl Med, 2017, 42(2): 154-156.
[27] Jadvar H, Desai B, Ji L, et al. Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer[J]. Clin Nucl Med, 2012, 37(7): 637-643.
[28] Salgarello M, Lunardi G, Inno A, et al. 18F-NaF PET/CT Imaging of Brain Metastases[J]. Clin Nucl Med, 2016, 41(7): 564-565.
[29] Iagaru A, Young P, Mittra E, et al. Pilot prospective evaluation of 99mTc-MDP scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and whole-body MRI for detection of skeletal metastases[J]. Clin Nucl Med, 2013, 38(7): e290- e296.
[30]Quirce R, Martínez-Rodríguez I, Banzo I, et al. New insight of functional molecular imaging into the atheroma biology: 18F-NaF and 18F-FDG in symptomatic and asymptomatic carotid plaques after recent CVA. Preliminary results[J]. Clin Physiol Funct Imaging, 2016, 36(6): 499-503.
[31]Li X, Heber D, Cal-Gonzalez J, et al. Association Between Osteogenesis and Inflammation During the Progression of Calcified Plaque Evaluated by (18)F-Fluoride and (18)F-FDG[J]. J Nucl Med, 2017, 58(6): 968-974.
[32]Rubeaux M, Joshi NV, Dweck MR, et al. Motion Correction of 18F-NaF PET for Imaging Coronary Atherosclerotic Plaques[J]. J Nucl Med, 2016, 57(1): 54-59.
[33] Dweck MR, Khaw HJ, Sng GK, et al. Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation[J]. Eur Heart J, 2013, 34(21): 1567-1574.
[34] Dweck MR, Jenkins WS, Vesey AT, et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis[J]. Circ Cardiovasc Imaging, 2014, 7(2): 371-378. |