[1] |
Freedman B, Potpara TS, Lip GY. Stroke prevention in atrial fibrillation[J]. The Lancet, 2016, 388(10046): 806-817.
|
[2] |
Goyal M, Demchuk AM, Menon BK. Randomized assessment of rapid endovascular treatment of ischemic stroke[J]. N Engl J Med, 2015, 372(11):1019-1930.
|
[3] |
Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association[J]. stroke, 2011, 42(9): 2672-2713.
|
[4] |
Román GC, Erkinjuntti T, Wallin A, et al. Subcortical ischaemic vascular dementia[J]. Lancet Neurol, 2002, 1(7): 426-436.
|
[5] |
Zhang Y, Liu H, Wang L, et al. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study[J]. Neuroradiology, 2016, 58(5): 503-511.
|
[6] |
Zheng XH, Sun LM, Yin DZ,et al. The plasticity of intrinsic functional connectivity patterns associated with rehabilitation intervention in chronic stroke patients[J]. Neuroradiology, 2016, 58(4): 417-427.
|
[7] |
Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke[J]. Phys Ther, 2012, 92(6): 791-798.
|
[8] |
Winters C, van Wegen EE, Daffertshofer A, et al. Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke[J]. Neurorehabil Neural Repair, 2015, 29(7): 614-622.
|
[9] |
Lam TK, Dawson DR, Honjo K, et al. Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke[J]. J Neurol Sci, 2018, 384:21-29.
|
[10] |
Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI[J]. Front Syst Neurosci, 2010, 4: 13.
|
[11] |
Li Y, Wang D, Zhang H, et al. Changes of brain connectivity in the primary motor cortex after subcortical stroke: a multimodal magnetic resonance imaging study[J]. Medicine (Baltimore), 2016. 95(6): e2579.
|
[12] |
Klingbeil J, Wawrzyniak M, Stockert A, et al. Resting-state functional connectivity: An emerging method for the study of language networks in post-stroke aphasia[J]. Brain Cogn, 2019, 131: 22-33
|
[13] |
Kelly C, Zuo XN, Gotimer K, et al. Reduced interhemispheric resting state functional connectivity in cocaine addiction[J]. Biol Psychiatry, 2011, 69(7): 684-692.
|
[14] |
Kalinosky BT, Barillas RB, Schmit BD. Structurofunctional resting-state networks correlate with motor function in chronic stroke[J]. Neuroimage Clin, 2017, 16: 610-623.
|
[15] |
Li S. Spasticity, motor recovery, and neural plasticity after stroke[J]. Front Neurol, 2017, 8: 120.
|
[16] |
Zuo XN, Kelly C, Martino AD, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy[J]. J Neurosci, 2010, 30(45): 15034-15043.
|
[17] |
Itabashi R, Nishio Y, Kataoka Y, et al. Damage to the left precentral gyrus is associated with apraxia of speech in acute stroke[J]. Stroke, 2016, 47(1): 31-36.
|