[1] |
Iatridis JC, Michalek AJ, Purmessur D, et al. Localized intervertebral disc injury leads to organ level changes in structure, cellularity, and biosynthesis[J]. Cell Mol Bioeng, 2009, 2(3): 437-447.
|
[2] |
Noda M, Saequsa Y, Takahashi M, et al. Biomechanical study using the finite element method of internal fixation in pauwels type vertical femoral neck fractures[J]. Arch Trauma Res, 2015, 4(3): e23167.
|
[3] |
Li J, Zhao X, Hu X, et al. A theoretical analysis and finite element simulation of fixator-bone system stiffness on healing progression[J]. J Appl Biomater Funct Mater, 2018, 16(3): 115-125.
|
[4] |
Liao SH. Expert system methodologies and applications-a decade review from 1995 to 2004[J]. Expert Syst Appl, 2005, 28(1): 93-103.
|
[5] |
李龙龙, 赵惠燕. 基于案例和模糊推理的农业虫害专家系统研究[J]. 计算机工程与设计, 2007, 28(22): 5570-5572.
|
[6] |
Bendo JA, Ong B, et al. Importance of correlating static and dynamic imaging studies in diagnosing degenerative lumbar spondylolisthesis[J]. Am J Orthop, 2001, 30(3): 247-250.
|
[7] |
Rohlmann A, Burra NK, Zander T, et al. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis[J]. Eur Spine J, 2007, 16(8): 1223-1231.
|
[8] |
Dabirrahmani D, Becker S, Hogg M, et al. Mechanical variables affecting balloon kyphoplasty outcome-a finite element study[J]. Comput Methods Biomech Biomed Engin, 2012, 15(3): 211-220.
|
[9] |
Schmidt H, Galbusera F, Rohlmann A, et al. Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis[J]. Eur Spine J. 2012, 21 (Suppl 5): 663-674.
|
[10] |
Shirazi-Adl SA, Shrivastava SC, Ahmed AM. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study[J]. Spine, 1984, 9(2): 120-134.
|
[11] |
Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model[J]. Spine, 1996, 21(22): 2570-2579.
|
[12] |
Zhong ZC, Wei SH, Wang JP, et al. Finite element analysis of the lumbar spine with a new cage using a topology optimization method[J]. Med Eng Phys, 2006, 28(1): 90-98.
|
[13] |
Rohlmann A, Bauer L, Zander T, et al. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data[J]. J Biomech, 2006, 39(6): 981-989.
|
[14] |
Schmidt H, Heuer F, Drumm J, et al. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment[J]. Clin Biomech, 2007, 22(4): 377-384.
|
[15] |
Schmidt H, Heuer F, Wilke HJ. Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system[J]? J Biomech, 2009, 42(1): 48-54.
|
[16] |
Ayturk UM, Puttlitz CM. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine[J]. Comput Methods Biomech Biomed Engin, 2011, 14(8): 695-705.
|
[17] |
Grosse IR, Milton-Benoit JM, Wileden JC. Ontologies for supporting engineering analysis models[J]. Ai Edam, 2005, 19(1): 1-18.
|
[18] |
Wriggers P, Siplivaya M, Joukova I, et al. Intelligent support of the preprocessing stage of engineering analysis using case-based reasoning[J]. Engineering With Computers, 2008, 24(4): 383-404.
|