[1] |
薛磊, 沈冰冰, 王丽娜, 等. 黄芩苷对新生大鼠缺氧缺血性脑损伤保护作用的实验研究[J]. 解放军医药杂志, 2019, 31(10): 6-9. DOI: 10.3969/j.issn.2095-140X.2019.10.002.
|
[2] |
Hamdy N, Eide S, Sun HS, et al. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents[J]. Exp Neurol, 2020, 334: 113457. DOI: 10.1016/j.expneurol.2020.113457.
|
[3] |
Bustelo M, Barkhuizen M, van den Hove DLA, et al. Clinical implications of epigenetic dysregulation in perinatal hypoxic-ischemic brain damage[J]. Front Neurol, 2020, 11: 483. DOI: 10.3389/fneur. 2020. 00483.
|
[4] |
Go H, Saito Y, Maeda H, et al. Serum cytokine profiling in neonates with hypoxic ischemic encephalopathy[J]. J Neonatal Perinatal Med, 2021, 14(2): 177-182. DOI: 10.3233/NPM-200431.
|
[5] |
Cho KH, Davidson JO, Dean JM, et al. Cooling and immunomodulation for treating hypoxic-ischemic brain injury[J]. Pediatr Int, 2020, 62(7): 770-778. DOI: 10.1111/ped.14215.
|
[6] |
Li Z, Xu CY, Tao YZ, et al. Anisodamine alleviates lipopolysaccharide-induced pancreatic acinar cell injury through NLRP3 inflammasome and NF-κB signaling pathway[J]. J Recept Signal Transduct Res, 2020, 40(1): 58-66. DOI: 10.1080/10799893.2020.1713808.
|
[7] |
Li YF, Xu BY, An R, et al. Protective effect of anisodamine in rats with glycerol-induced acute kidney injury[J]. BMC Nephrol, 2019, 20(1): 223. DOI: 10.1186/s12882-019-1394-y.
|
[8] |
Xu ZW, Wang T, Chen L, et al. Treatment of dilated cardiomyopathy caused by coronary microvascular dysfunction with anisodamine: a report of 5 cases[J]. J Tradit Chin Med, 2020, 40(2): 340-342. PMID: 32242401.
|
[9] |
Liu C, Shen FM, Le YY, et al. Antishock effect of anisodamine involves a novel pathway for activating alpha7 nicotinic acetylcholine receptor[J]. Crit Care Med, 2009, 37(2): 634-641. DOI: 10.1097/CCM.0b013e31819598f5.
|
[10] |
Li XL, Hong M. Aqueous extract of Dendrobium officinale confers neuroprotection against hypoxic-ischemic brain damage in neonatal rats[J]. Kaohsiung J Med Sci, 2020, 36(1): 43-53. DOI: 10.1002/kjm2.12139.
|
[11] |
Zhao Q, Cheng X, Wang X, et al. Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats[J]. J Ethnopharmacol, 2016, 192: 140-147. DOI: 10.1016/j.jep.2016.07.016.
|
[12] |
Fang H, Li HF, Yang M, et al. microRNA-128 enhances neuroprotective effects of dexmedetomidine on neonatal mice with hypoxic-ischemic brain damage by targeting WNT1[J]. Biomed Pharmacother, 2019, 113: 108671. DOI: 10.1016/j.biopha.2019.108671.
|
[13] |
Hou X, Yuan Z, Wang X, et al. Peptidome analysis of cerebrospinal fluid in neonates with hypoxic-ischemic brain damage[J]. Mol Brain, 2020, 13(1): 133. DOI: 10.1186/s13041-020-00671-9.
|
[14] |
杜逸亭, 高淑强, 李彪, 等. 高压氧联合GM-1治疗对新生儿缺血缺氧性脑病患儿血清Bcl-2、NSE和NF-κB的影响[J]. 解放军医药杂志, 2017, 29(12): 61-63. DOI: 10.3969/j.issn.2095-140X.2017.12.017.
|
[15] |
闫继宏, 王勇. 促红细胞生成素治疗新生儿缺氧缺血性脑病的研究进展[J]. 临床误诊误治, 2017, 30(11): 112-116. DOI: 10.3969/j.issn.1002-3429.2017.11.033.
|
[16] |
Dumbuya JS, Chen L, Shu SY, et al. G-CSF attenuates neuroinflammation and neuronal apoptosis via the mTOR/p70SK6 signaling pathway in neonatal Hypoxia-Ischemia rat model[J]. Brain Res, 2020, 1739: 146817. DOI: 10.1016/j. brainres.2020.146817.
|
[17] |
邱玲, 范方毅, 邓锐, 等. miR-181a-5p对T淋巴细胞白血病Jurkat细胞增殖和凋亡的影响[J]. 临床误诊误治, 2019, 32(3): 40-45. DOI: 10.3969/j.issn.1002-3429.2019.03.010.
|
[18] |
Zhang C, Ni S, Yang ZC, et al. Oxidative stress induces chondrocyte apoptosis through caspase-dependent and caspase-independent mitochondrial pathways and the antioxidant mechanism of angelica sinensis polysaccharide[J]. Oxid Med Cell Longev, 2020: 3240820. DOI: 10.1155/2020/3240820.
|
[19] |
Jaldeep L, Lipi B, Prakash P. Potential role of NGF, BDNF and their receptors in oligodendrocytes differentiation from neural stem cell an in vitro study[J]. Cell Biol Int, 2021, 45(2): 432-446. DOI: 10.1002/cbin.11500.
|
[20] |
Wang XX, Cong PX, Wang XC, et al. Maternal diet with sea urchin gangliosides promotes neurodevelopment of young offspring via enhancing NGF and BDNF expression[J]. Food Funct, 2020, 11(11): 9912-9923. DOI: 10.1039/d0fo01605e.
|
[21] |
Kong ZL, Hsu YT, Johnson A, et al. Protective effects of Antrodia camphorata extract against hypoxic cell injury and ischemic stroke brain damage[J]. Phytother Res, 2021, 35(3): 1609-1620. DOI: 10.1002/ptr.6928.
|
[22] |
Hu X, Li SR, Doycheva DM, et al. Rh-CSF1 Attenuates oxidative stress and neuronal apoptosis via the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of neonatal HIE[J]. Oxid Med Cell Longev, 2020, 2020: 6801587. DOI: 10.1155/2020/6801587.
|
[23] |
Le K, Song ZP, Deng J, et al. Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation[J]. Inflamm Res, 2020, 69(12): 1201-1213. DOI: 10.1007/s00011-020-01402-5.
|