[1] |
Lane CA, Hardy J, Schott JM. Alzheimer's disease[J]. Eur J Neurol, 2018, 25(1): 59-70. DOI: 10.1111/ene.13439.
|
[2] |
Xin SH, Tan L, Cao X, et al. Clearance of amyloid beta and tau in Alzheimer's disease: from mechanisms to therapy[J]. Neurotox Res, 2018, 34(3): 733-748. DOI: 10.1007/s12640-018-9895-1.
|
[3] |
Thibaudeau TA, Smith DM. A practical review of proteasome pharmacology[J]. Pharmacol Rev, 2019, 71(2): 170-197. DOI: 10.1124/pr.117.015370.
|
[4] |
Lopez Salon M, Pasquini L, Besio Moreno M, et al. Relationship between beta-amyloid degradation and the 26S proteasome in neural cells[J]. Exp Neurol, 2003, 180(2): 131-143. DOI: 10.1016/s0014-4886(02)00060-2.
|
[5] |
Keck S, Nitsch R, Grune T, et al. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease[J]. J Neurochem, 2003, 85(1): 115-122. DOI: 10.1046/j.1471-4159.2003.01642.x.
|
[6] |
Niu XJ, Zhao YH, Yang N, et al. Proteasome activation by insulin-like growth factor-1/nuclear factor erythroid 2-related factor 2 signaling promotes exercise-induced neurogenesis[J]. Stem Cells, 2020, 38(2): 246-260. DOI: 10.1002/stem.3102.
|
[7] |
Choi SH, Bylykbashi E, Chatila ZK, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model[J]. Science, 2018, 361(6406): eaan8821. DOI: 10.1126/science.aan8821.
|
[8] |
Lopez Sanchez MIG, van Wijngaarden P, Trounce IA. Amyloid precursor protein-mediated mitochondrial regulation and Alzheimer's disease[J]. Br J Pharmacol, 2019, 176(18): 3464-3474. DOI: 10.1111/bph.14554.
|
[9] |
Paxinos G, Franklin KBJ. Paxinos and Franklin's the mouse brain in stereotaxic coordinates[M]. Amsterdam: Academic Press, Elsevier, 2019: 69.
|
[10] |
黄菲菲, 王必慧, 赵泳媚, 等. 运动上调蛋白酶体活性促进SVZ区神经发生[J]. 中国运动医学杂志, 2019, 38(2): 126-130. DOI: 10.3969/j.issn.1000-6710.2019.02.007.
|
[11] |
Opattova A, Cente M, Novak M, et al. The ubiquitin proteasome system as a potential therapeutic target for treatment of neurodegenerative diseases[J]. Gen Physiol Biophys, 2015, 34(4): 337-352. DOI: 10.4149/gpb_2015024.
|
[12] |
余锋, 贾芳芳. 运动调控GSK-3β介导阿尔茨海默症的机制探析[J]. 南京体育学院学报,2020, 19(2): 52-59. DOI: 10.15877/j.cnki.nsin. 2020. 02.008.
|
[13] |
Leng FD, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here[J]? Nat Rev Neurol, 2021, 17(3): 157-172. DOI: 10.1038/s41582-020-00435-y.
|
[14] |
Atri A. The Alzheimer's disease clinical spectrum: diagnosis and management[J]. Med Clin North Am, 2019,103(2): 263-293. DOI: 10.1016/j.mcna.2018.10.009.
|
[15] |
Hassan WM, Merin DA, Fonte V, et al. AIP-1 ameliorates beta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer's disease model[J]. Hum Mol Genet, 2009, 18(15): 2739-2747. DOI: 10.1093/hmg/ddp209.
|
[16] |
Himeno E, Ohyagi Y, Ma L, et al. Apomorphine treatment in Alzheimer mice promoting amyloid-beta degradation[J]. Ann Neurol, 2011, 69(2): 248-256. DOI: 10.1002/ana.22319.
|
[17] |
Nakamura N, Ohyagi Y, Imamura T, et al. Apomorphine therapy for neuronal insulin resistance in a mouse model of Alzheimer's disease[J]. J Alzheimers Dis, 2017, 58(4): 1151-1161. DOI: 10.3233/JAD-160344.
|
[18] |
Medina DX, Caccamo A, Oddo S. Methylene blue reduces abeta levels and rescues early cognitive deficit by increasing proteasome activity[J]. Brain Pathol, 2011, 21(2): 140-149. DOI: 10.1111/j.1750-3639.2010.00430.x.
|
[19] |
Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides[J]. J Biol Chem, 2005, 280(45): 37377-37382. DOI: 10.1074/jbc.M508246200.
|