[1] |
Ndjaboue R, Farhat I, Ferlatte CA, et al. Predictive models of diabetes complications: protocol for a scoping review[J]. Syst Rev, 2020, 9(1): 137. DOI: 10.1186/s13643-020-01391-w.
|
[2] |
La Vignera S, Condorelli R, Vicari E, et al. Diabetes mellitus and sperm parameters[J]. J Androl, 2012, 33(2): 145-153. DOI: 10.2164/jandrol.111.013193.
|
[3] |
Kleinberger JW, Pollin TI. Personalized medicine in diabetes mellitus: current opportunities and future prospects[J]. Ann N Y Acad Sci, 2015, 1346(1): 45-56. DOI: 10.1111/nyas.12757.
|
[4] |
Qin Y, Li L, Luo E, et al. Role of m6A RNA methylation in cardiovascular disease (Review)[J]. Int J Mol Med, 2020, 46(6): 1958-1972. DOI: 10.3892/ijmm.2020.4746.
|
[5] |
Widagdo J, Anggono V. The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity[J]. J Neurochem, 2018, 147(2): 137-152. DOI: 10.1111/jnc.14481.
|
[6] |
Wu S, Zhang S, Wu X, et al. m(6)A RNA methylation in cardiovascular diseases[J]. Mol Ther, 2020, 28(10): 2111-2119. DOI: 10.1016/j.ymthe.2020.08.010.
|
[7] |
Wu J, Frazier K, Zhang J, et al. Emerging role of m(6)A RNA methylation in nutritional physiology and metabolism[J]. Obes Rev, 2020, 21(1): e12942. DOI: 10.1111/obr.12942.
|
[8] |
杨润军, 李青旺, 赵蕊. 四氧嘧啶与链脲佐菌素诱导小鼠糖尿病模型的效果比较[J]. 西北农林科技大学学报(自然科学版), 2006, 34(2): 17-20. DOI: 10.13207/j.cnki.jnwafu.2006.02.004.
|
[9] |
姚兰, 蒋成霞, 郭艳艳, 等. 沙棘多糖抑制PERK/ATF4/CHOP通路缓解糖尿病大鼠胰岛素抵抗和肝肾功能损伤[J]. 中国临床解剖学杂志, 2021, 39(2): 187-191. DOI: 10.13418/j.issn.1001-165x.2021.02.013.
|
[10] |
刘莉, 罗鹏, 周田田, 等. 厄贝沙坦对高血压合并2型糖尿病大鼠胰岛素抵抗IRS-1/PI3K/GLUT4信号通路的影响[J]. 中国临床解剖学杂志, 2021, 39(5): 563-568. DOI: 10.13418/j.issn.1001-165x.2021.05.012.
|
[11] |
Goyal SN, Reddy NM, Patil KR, et al. Challenges and issues with streptozotocin-induced diabetes- a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics[J]. Chem Biol Interact, 2016, 244: 49-63. DOI: 10.1016/j.cbi.2015.11.032.
|
[12] |
Saadane A, Lessieur EM, Du Y, et al. Successful induction of diabetes in mice demonstrates no gender difference in development of early diabetic retinopathy[J]. PLoS One, 2020, 15(9): e0238727. DOI: 10.1371/journal.pone.0238727.
|
[13] |
Yigitturk G, Acara AC, Erbas O, et al. The antioxidant role of agomelatine and gallic acid on oxidative stress in STZ induced type I diabetic rat testes[J]. Biomed Pharmacother, 2017, 87: 240-246. DOI: 10.1016/j.biopha.2016.12.102.
|
[14] |
Li Z, Hao S, Yin H, et al. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice[J]. Behav Brain Res, 2016, 305: 265-277. DOI: 10.1016/j.bbr.2016.03.023.
|
[15] |
Shi GJ, Zheng J, Wu J, et al. Beneficial effects of Lycium barbarum polysaccharide on spermatogenesis by improving antioxidant activity and inhibiting apoptosis in streptozotocin-induced diabetic male mice[J]. Food Funct, 2017, 8(3): 1215-1226. DOI: 10.1039/c6fo01575a.
|
[16] |
邱竹, 姜蓉, 汪子铃, 等. 当归多糖对D-半乳糖致衰老小鼠睾丸的保护作用[J]. 解剖学报, 2019, 50(4): 506-511. DOI: 10.16098/j.issn.0529-1356.2019.04.017.
|
[17] |
牛磊, 罗诗诗, 李威, 等. 丰富环境通过抑制NOD样受体蛋白3炎性小体活化缓解脂多糖小鼠的认知障碍[J]. 解剖学报, 2020, 51(2): 172-177. DOI: 10.16098/j.issn.0529-1356.2020.02.004.
|
[18] |
罗诗诗, 苏强, 孙秋敏, 等. 小鼠视觉发育关键期外侧膝状体胰岛素样生长因子2的动态表达[J]. 解剖学报, 2020, 51(3): 338-343. DOI: 10.16098/j.issn.0529-1356.2020.03.005.
|
[19] |
Pergialiotis V, Prodromidou A, Frountzas M, et al. Diabetes mellitus and functional sperm characteristics: a meta-analysis of observational studies[J]. J Diabetes Complications, 2016, 30(6): 1167-1176. DOI: 10.1016/j.jdiacomp.2016.04.002.
|
[20] |
罗丹, 杨惠, 罗诗诗, 等. 海马sortilin在链脲佐菌素诱导的糖尿病认知损伤小鼠中的作用[J]. 解剖学报, 2020, 51(1): 9-14. DOI: 10.16098/j.issn.0529-1356.2020.01.002.
|
[21] |
Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal[J]. Physiol Rev, 1972, 52(1): 198-236. DOI: 10.1152/physrev.1972.52.1.198.
|
[22] |
Leonetti AM, Chu MY, Ramnaraign FO, et al. An emerging role of m6A in memory: a case for translational priming[J]. Int J Mol Sci, 2020, 21(20): 7447. DOI: 10.3390/ijms21207447.
|
[23] |
Zhang C, Fu J, Zhou Y. A review in research progress concerning m6a methylation and immunoregulation[J]. Front Immunol, 2019, 10: 922. DOI: 10.3389/fimmu.2019.00922.
|
[24] |
Yang Y, Huang W, Huang JT, et al. Increased N6-methyladenosine in human sperm RNA as a risk factor for asthenozoospermia[J]. Sci Rep, 2016, 6: 24345. DOI: 10.1038/srep24345.
|
[25] |
Xu K, Yang Y, Feng GH, et al. Mettl3-mediated m(6)A regulates spermatogonial differentiation and meiosis initiation[J]. Cell Res, 2017, 27(9): 1100-1114. DOI: 10.1038/cr.2017.100.
|
[26] |
Lin Z, Hsu PJ, Xing X, et al. Mettl3-/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis[J]. Cell Res, 2017, 27(10): 1216-1230. DOI: 10.1038/cr.2017.117.
|
[27] |
Landfors M, Nakken S, Fusser M, et al. Sequencing of FTO and ALKBH5 in men undergoing infertility work-up identifies an infertility-associated variant and two missense mutations[J]. Fertil Steril, 2016, 105(5): 1170-1179.e5. DOI: 10.1016/j.fertnstert.2016.01.002.
|
[28] |
Li A, Chen YS, Ping XL, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation[J]. Cell Res, 2017, 27(3): 444-447. DOI: 10.1038/cr.2017.10.
|