[1] Decharin P, Suvithayasiri S, Nivatpumin P, et al. Subpial schwannoma of the cervical spinal cord: a case report and its intraoperative finding supporting a theory of the pathogenesis of an intramedullary schwannoma[J]. Asian J Neurosurg, 2022,17(1):108-111. DOI: 10.1055/s-0042-1748785.
[2] Gazzeri R, Telera S, Galarza M, et al. Surgical treatment of intramedullary spinal cord metastases: functional outcome and complications-a multicenter study[J]. Neurosurg Rev, 2021, 44(6): 3267-3275. DOI: 10.1007/s10143-021-01491-8.
[3] Shanthanna H, Uppal V, Joshi GP, et al. Intraoperative nociception monitoring[J]. Anesthesiol Clin, 2021, 39(3): 493-506. DOI: 10.1016/j.anclin.2021.03.008.
[4] Rajappa D, Khan MM, Masapu D, et al. Multimodal intraoperative neurophysiological monitoring in spine surgeries: the experience at a spine centre through years[J]. Asian Spine J, 2021, 15(6): 728-738. DOI: 10.31616/asj.2020.0400.
[5] 史玉泉, 周孝达. 实用神经病学[M]. 上海: 上海科学技术出版社, 2004: 88-89.
[6] Wang H, Zhang L, Wang H, et al. Spinal hemangioblastoma: surgical procedures, outcomes and review of the literature[J]. Acta Neurol Belg, 2021, 121(4): 973-981. DOI: 10.1007/s13760-020-01420-4.
[7] Sánchez Roldán MÁ, Moncho D, Rahnama K, et al. Intraoperative neurophysiological monitoring in syringomyelia surgery: a multimodal approach[J]. J Clin Med,2023,12(16):5200.DOI: 10.3390/jcm12165200.
[8] Miró Lladó J, López-Ojeda P, Pedro J, et al. Evaluation of multimodal intraoperative neurophysiologic monitoring during supratentorial aneurysm surgery: a comparative study[J]. Neurosurg Rev, 2022, 45(3): 2161-2173. DOI: 10.1007/s10143-021-01710-2.
[9] Gupta S, Siddiqui SA, Sinha U, et al. Multimodal intraoperative neurophysiological monitoring in cranial and spinal tumour surgeries: a descriptive observational study[J]. Cureus, 2023, 15(11): e49411. DOI: 10.7759/cureus.49411.
[10] Tropeano MP, Rossini Z, Franzini A, et al. Multimodal intraoperative neurophysiological monitoring in intramedullary spinal cord tumors: a 10-year single center experience[J]. Cancers (Basel), 2023, 16(1): 111. DOI: 10.3390/cancers16010111.
[11] Agarwal N, Shabani S, Huang J, et al. Intraoperative monitoring for spinal surgery[J]. Neurol Clin, 2022, 40(2): 269-281. DOI: 10.1016/j.ncl.2021.11.006.
[12] Sangeetha RP, Bharadwaj S. KetaDex: a saviour for intraoperative multimodal neurophysiological monitoring in complex neurosurgeries[J]. Neurol India, 2021, 69(1): 187-189. DOI: 10.4103/0028-3886. 310078.
[13]Siller S, Sixta A, Tonn JC, et al. Feasibility of multimodal intraoperative neurophysiological monitoring for extramedullary spinal cord tumor surgery in elderly patients[J]. Acta Neurochir (Wien), 2023, 165(8): 2089-2099. DOI: 10.1007/s00701-023-05682-8.
[14] Li Q, Gu G, Wang L, et al. Using EMG signals to assess proximity of instruments to nerve roots during robot-assisted spinal surgery[J]. Int J Med Robot, 2022, 18(4): e2408. DOI: 10.1002/rcs.2408.
[15] Bianchi F, Cursi M, Caravati H, et al. Intraoperative neurophysiologic monitoring in thoracoabdominal aortic aneurysm surgery can provide real-time feedback for strategic decision making[J]. Neurophysiol Clin, 2022, 52(3): 232-241. DOI: 10.1016/j.neucli.2021.12.006.
[16] Li R, Huang ZC, Cui HY, et al. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury[J]. Neural Regen Res, 2021, 16(7): 1323-1330. DOI: 10.4103/1673-5374.301486.
[17] Antkowiak L, Putz M, Sordyl R, et al. Relevance of intraoperative motor evoked potentials and D-wave monitoring for the resection of intramedullary spinal cord tumors in children[J]. Neurosurg Rev, 2022, 45(4): 2723-2731. DOI: 10.1007/s10143-022-01788-2.
|