Establishment of an animal model for deep cervical lymphaticovenous anastomosis in rats

Wu Jianlong, Xie Qingping, Chen Boda, Zhu Ziguan, Yang Xiaodong

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (2) : 147-150.

PDF(1776 KB)
PDF(1776 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (2) : 147-150. DOI: 10.13418/j.issn.1001-165x.2025.2.06

Establishment of an animal model for deep cervical lymphaticovenous anastomosis in rats

  • Wu Jianlong1, Xie Qingping2*, Chen Boda1, Zhu Ziguan1, Yang Xiaodong
Author information +
History +

Abstract

Objective    To establish a rat model of deep neck lymphatic vein anastomosis with complex anatomy and repeatable operation in response to the training needs of experimental animal microsurgery techniques, in order to enhance the operational ability of microsurgery physicians in lymphatic vein anastomosis in the deep neck anatomical area.    Methods   Twenty 4-5 week old SPF grade male SD rats (weighing approximately 100 g) were selected and anesthetized with pentobarbital sodium (45 mg/kg) via intraperitoneal injection, and then fixed in a supine position. Diluted indocyanine green (ICG) 0.05-0.1 mL (concentration: 0.1 mg/mL) was injected under the nasal mucosa to visualize lymphatic vessels, make a 1.5 cm incision along the midline of the neck, and intraoperative fluorescence imaging technology was used to expose deep cervical lymphatic vessels and external jugular veins. Lymphatic vein end-to-end anastomosis or end-to-end anastomosis at a magnification of 25 times was performed.   Results   The average diameter of the candidate lymphatic vessels in the deep neck was 0.18 mm (0.1-0.4 mm), and the diameter of the venous vessels was (0.6-1.2) mm. 20 cases of anastomosis were completed, with an immediate lymphatic vein recanalization rate of 95% (19/20) and 1 failure.   Conclusions   This model can simulate the clinical scenario of deep neck lymphatic vein anastomosis, and has both anatomical preparation and operational repeatability, providing an operable animal model for training deep neck lymphatic vein anastomosis.

Key words

Deep cervical lymphaticovenous anastomosis /   /   / Animal model /   /   / Microsurgery /   /   / Skill training

Cite this article

Download Citations
Wu Jianlong, Xie Qingping, Chen Boda, Zhu Ziguan, Yang Xiaodong. Establishment of an animal model for deep cervical lymphaticovenous anastomosis in rats[J]. Chinese Journal of Clinical Anatomy. 2025, 43(2): 147-150 https://doi.org/10.13418/j.issn.1001-165x.2025.2.06

References

[1]   Sakrak T, Köse AA, Karabağli Y, et al. Rat tail revascularization model for advanced microsurgery training and research[J]. J Reconstr Microsurg, 2011, 27(7):391-396. DOI: 10.1055/s-0031-1281519.
[2]  卢鸿瑞, 谭云飞, 谢庆平. 3D脱目镜下行颈深淋巴管-静脉引流术治疗老年认知障碍患者一例疗效初步观察[J]. 中华显微外科杂志, 2022, 45(5):570-574. DOI:10.3760/cma.j.cn441206-20210809-00194.
[3] Galmiche C, Hidalgo Diaz JJ, Vernet P, et al. Learning of supermicrosurgical vascular anastomosis: MicroChirSim procedural simulator versus Anastomosis Training Kit procedural simulator[J]. Hand Surg Rehabil, 2018, 37(1):20-23. DOI: 10.1016/j.hansur.2017.10.236.
[4]  Jacobson JH, 2nd, Suare EL. Microvascular surgery[M]. Dis Chest, 1962, 41: 220-224. DOI:10.1378/chest.41.2.220.
[5] Sedlácek J. Lymphovenous shunt as supplementary treatment of elephantiasis of lower limbs[J]. Acta Chir Plast, 1969,11(2):157-162. DOI:10.1097/00006534-196912000-00025.
[6]  B O'Brien BM, Sykes P, Threlfall GN, et al. Microlymphaticovenous anastomoses for obstructive lymphedema[J]. Plast Reconstr Surg, 1977, 60(2):197-211. DOI:10.1097/00006534-197708000-00006.
[7]  Koshima I, Inagawa K, Urushibara K, et al. Paraumbilical perforator flap without deep inferior epigastric vessels [J]. Plast Reconst Surg, 1998, 102(4):1052-1057. DOI:10.1097/00006534-199809040-00020.
[8] Koshima I, Yamamoto T, Narushima M, et al. Perforator flaps and supermicrosurgery [J]. Clin Plast Surg, 2010, 37(4): 683-689. DOI:10.1016/j.cps.2010.06.009.
[9]  Atlan M, Lellouch AG, Legagneux J, et al. A new synthetic model for microvascular anastomosis training? a randomized comparative study between silicone and polyvinyl alcohol gelatin tubes [J]. J Surg Educ, 2018,75(1):182-187. DOI:10.1016/j.jsurg.2017.06.008. 
[10]Capkin S, Cavit A, Kaleli T. Microsurgery training with smartphone[J]. Handchir Mikrochir Plast Chir, 2018,50(6):443-445. DOI:10.1055/a-0661-6015.
[11]Menovsky T. Microsurgical training model using chicken thigh[J]. Plast Reconstr Surg, 2011,128(2):609-610. DOI:10.1097/PRS.0b013e31821ef1b2. 
[12]GJung J, Jeong D. A comparison study of vessel twisting by different microsurgical suture techniques in a chicken wing artery side to side bypass training model[J]. J Cerebrovasc Endovasc Neurosurg, 2023,25(3):260-266. DOI: 10.7461/jcen.2023. 
[13]Leuzzi S, Maruccia M, Elia R, et al. Lymphatic-venous anastomosis in a rat model: A novel exercise for microsurgical training[J]. J Surg Oncol, 2018,118(6):936-940. DOI: 10.1002/jso.25234.
[14]Fernández Peñuela R, Pons Playa G, Casaní Arazo L, et al. An experimental lymphedema animal model for assessing the results of lymphovenous anastomosis[J]. Lymphat Res Biol, 2018,16(3):234-239. DOI:10.1089/lrb.2016.0068.
[15]Pion E, Zucal I, Troebs J, et al. New, innovative, three-dimensional in vivo model for high-level microsurgical and supermicrosurgical training: a replacement for animal models[J]. Plast Reconstr Surg, 2022,150(2):432-436. DOI:10.1097/PRS.0000000000009330.
[16]Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341. DOI:10.1038/nature14432. 
PDF(1776 KB)

Accesses

Citation

Detail

Sections
Recommended

/