Advances in the study of ossification of the nuchal ligaments of the cervical spine

Ye Wenlin, Chen Chong, Liang Guoyan, Ye Yongyu, Yu Tao, Cheng Xing, Zheng Xiaoqing, Chang Yunbing

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (2) : 229-233.

PDF(563 KB)
PDF(563 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (2) : 229-233. DOI: 10.13418/j.issn.1001-165x.2025.2.19

Advances in the study of ossification of the nuchal ligaments of the cervical spine

  • Ye Wenlin, Chen Chong, Liang Guoyan, Ye Yongyu, Yu Tao, Cheng Xing, Zheng Xiaoqing, Chang Yunbing*
Author information +
History +

Abstract

Ossification of the Nuchal Ligament (ONL) refers to the dense calcification or ossification of the soft tissue area of the nuchal ligament often caused by the damage and degeneration of the nuchal ligament tissue, which disrupts the biomechanical balance of the cervical spine and causes neck discomfort. ONL is often found accidentally by X-ray examination of cervical spondylosis, because the initial symptoms of most patients with ossification of the nuchal ligament are mild. Although studies have suggested that the occurrence and development of ONL are related to a variety of molecular and environmental factors, the pathophysiological development of ONL at different stages of development is still unclear. ONL is one type of the heterotopic ossification. Many studies have confirmed the correlation between ONL and preoperative cervical instability and cervical spondylosis. However, ONL is often removed in laminoplasty, and studies on the long-term stability of cervical spondylosis patients with ONL after surgery are rare. Different genes and extrinsic causative factors have been proved to play an important role in the progression of ectopic ossification. Meanwhile, osteogenic precursor cells, local tissue microenvironment and nervous system regulation also play an important role in ectopic ossification. This paper analyzes the epidemiology and etiology, anatomy and biomechanics, clinical history, classification and clinical significance. Pathophysiological mechanism and external pathogenic factors of ONL, and further summarizes them for a better understanding of ONL. In addition, suggestions were provided for the study of cervical spine stability and molecular mechanism of ONL in patients with degenerative cervical myelopathy after single door opening surgery.

Key words

Ossification of nuchal ligament / Heterotopic ossification / Biomechanics / Pathophysiological mechanism

Cite this article

Download Citations
Ye Wenlin, Chen Chong, Liang Guoyan, Ye Yongyu, Yu Tao, Cheng Xing, Zheng Xiaoqing, Chang Yunbing. Advances in the study of ossification of the nuchal ligaments of the cervical spine[J]. Chinese Journal of Clinical Anatomy. 2025, 43(2): 229-233 https://doi.org/10.13418/j.issn.1001-165x.2025.2.19

References

[1]  Shingyouchi Y, Nagahama A, Niida M. Ligamentous ossification of the cervical spine in the late middle-aged Japanese men. Its relation to body mass index and glucose metabolism[J]. Spine, 1996, 21(21): 2474-2478. DOI: 10.1097/00007632-199611010-00013.
[2]  Lee CH, Kim KT, Kim CH, et al. Unveiling the genetic variation of severe continuous/mixed-type ossification of the posterior longitudinal ligament by whole-exome sequencing and bioinformatic analysis[J]. Spine J, 2021, 21(11): 1847-1856. DOI: 10.1016/j.spinee.2021.07.005.
[3] Wang H, Zou F, Jiang J, et al. Analysis of radiography findings of ossification of nuchal ligament of cervical spine in patients with cervical spondylosis[J]. Spine, 2014, 39(1): E7-E11. DOI: 10.1097/brs.0000000000000037.
[4]  Izawa K. [Comparative roentgenographical study on the incidence of ossification of the posterior longitudinal ligament and other degenerative changes of the cervical spine among Japanese, Koreans, Americans and Germans (author's transl)][J]. Nihon Seikeigeka Gakkai Zasshi, 1980, 54(5): 461-474. PMID: 6775031. 
[5]  Kim DG, Oh YM, Eun JP. The Clinical Significance of Ossification of Ligamentum Nuchae in Simple Lateral Radiograph : A Correlation with Cervical Ossification of Posterior Longitudinal Ligament[J]. J Korean Neurosurgl Soc,2015,58(5): 442-447. DOI: 10.3340/jkns. 2015.58. 5.442.
[6] Johnson GM, Zhang M, Jones DG. The fine connective tissue architecture of the human ligamentum nuchae[J]. Spine, 2000, 25(1): 5-9. DOI: 10.1097/00007632-200001010-00003.
[7]  Liu B, Liu Z, VanHoof T, et al. Kinematic study of the relation between the instantaneous center of rotation and degenerative changes in the cervical intervertebral disc[J]. Eur Spine J, 2014, 23(11): 2307-2313. DOI: 10.1007/s00586-014-3431-7.
[8]  Sakaura H, Hosono N, Mukai Y, et al. Medium-term outcomes of C3-6 laminoplasty for cervical myelopathy: a prospective study with a minimum 5-year follow-up[J]. Eur Spine J, 2011, 20(6): 928-933. DOI: 10.1007/s00586-011-1690-0.
[9] O'Connell JX, Janzen DL, Hughes TR. Nuchal fibrocartilaginous pseudotumor: a distinctive soft-tissue lesion associated with prior neck injury[J]. Am J Surg Pathol, 1997, 21(7): 836-840. DOI: 10.1097/00000478-199707000-00012.
[10]Yoshida M, Shima K, Taniguchi Y, et al. Hypertrophied ligamentum flavum in lumbar spinal canal stenosis. Pathogenesis and morphologic and immunohistochemical observation[J]. Spine, 1992, 17(11): 1353-1360. DOI: 10.1097/00007632-199211000-00015.
[11]于淼, 刘忠军. 项韧带骨化相关因素及其组织学变化[J]. 中国脊柱脊髓杂志,2006, (8):586-588+641. DOI: 10.3969/j.issn.1004-406X. 2006. 08.005.
[12]Wang YJ, Shi Q, Lu WW, et al. Cervical intervertebral disc degeneration induced by unbalanced dynamic and static forces: a novel in vivo rat model[J]. Spine, 2006, 31(14): 1532-1538. DOI: 10.1097/01.brs.0000222019.84095.23.
[13]Lin TY, Chen JT, Chen YY, et al. The efficacy of ultrasound-guided extracorporeal shockwave therapy in patients with cervical spondylosis and nuchal ligament calcification[J]. KaohsiungJ Med Sci, 2015, 31(7): 337-343. DOI: 10.1016/j.kjms.2015.05.003.
[14]Kim MS, Park HJ, Lee SY, et al. Association between ossification of the posterior longitudinal ligament and ossification of the nuchal ligament in the cervical spine[J]. PloS one, 2019, 14(11): e0224729. DOI: 10.1371/journal.pone.0224729.
[15]王长峰, 贾连顺, 魏海峰, 等. 项韧带钙化与颈椎病黄韧带退变的相关性研究[J]. 中国矫形外科杂志, 2006, (03): 203-205. DOI: 10.3969/j.issn.1005-8478.2006.03.014.
[16]Yan L, Chang Z, Liu Y, et al. A single nucleotide polymorphism in the human bone morphogenetic protein-2 gene (109T > G) affects the Smad signaling pathway and the predisposition to ossification of the posterior longitudinal ligament of the spine[J]. Chin Medl J (Engl), 2013, 126(6): 1112-1118. DOI: 10.3760/cma.j.issn.0366-6999.20123323 
[17]Ren Y, Feng J, Liu ZZ, et al. A new haplotype in BMP4 implicated in ossification of the posterior longitudinal ligament (OPLL) in a Chinese population[J]. J Orthop Res, 2012, 30(5): 748-756. DOI: 10.1002/jor.21586.
[18]Ren Y, Liu ZZ, Feng J, et al. Association of a BMP9 haplotype with ossification of the posterior longitudinal ligament (OPLL) in a Chinese population[J]. PLoS One, 2012, 7(7): e40587. DOI: 10.1371/journal.pone.0040587.
[19]Jekarl DW, Paek CM, An YJ, et al. TGFBR2 gene polymorphism is associated with ossification of the posterior longitudinal ligament[J]. J Clin Neurosci, 2013, 20(3): 453-456. DOI: 10.1016/j.jocn.2012.05.031.
[20]Kawaguchi H, Kurokawa T, Hoshino Y, et al. Immunohistochemical demonstration of bone morphogenetic protein-2 and transforming growth factor-beta in the ossification of the posterior longitudinal ligament of the cervical spine[J]. Spine, 1992, 17(3 Suppl): S33-S36. DOI: 10.1097/00007632-199203001-00007.
[21]Tsukahara S, Miyazawa N, Akagawa H, et al. COL6A1, the candidate gene for ossification of the posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese[J]. Spine, 2005, 30(20): 2321-2324. DOI: 10.1097/01.brs.0000182318.47343.6d.
[22]Wei W, He HL, Chen CY, et al. Whole exome sequencing implicates PTCH1 and COL17A1 genes in ossification of the posterior longitudinal ligament of the cervical spine in Chinese patients[J]. Genet Mol Res, 2014, 13(1): 1794-1804. DOI: 10.4238/2014.March.17.7.
[23]Tang T, Zhu Z, He Z, et al. DLX5 regulates the osteogenic differentiation of spinal ligaments cells derived from ossification of the posterior longitudinal ligament patients via NOTCH signaling[J]. JOR spine, 2023, 6(2): e1247. DOI: 10.1002/jsp2.1247.
[24]Nakajima M, Koido M, Guo L, et al. A novel CCDC91 isoform associated with ossification of the posterior longitudinal ligament of the spine works as a non-coding RNA to regulate osteogenic genes[J]. AmJ Hum Genet, 2023, 110(4): 638-647. DOI: 10.1016/j.ajhg.2023.03.004.
[25]Egan KP, Duque G, Keenan MA, et al. Circulating osteogentic precursor cells in non-hereditary heterotopic ossification[J]. Bone, 2018, 109: 61-64. DOI: 10.1016/j.bone.2017.12.028.
[26]Downey J, Lauzier D, Kloen P, et al. Prospective heterotopic ossification progenitors in adult human skeletal muscle[J]. Bone, 2015, 71: 164-170. DOI: 10.1016/j.bone.2014.10.020.
[27]Wang H, Lindborg C, Lounev V, et al. Cellular Hypoxia Promotes Heterotopic Ossification by Amplifying BMP Signaling[J]. J Bone Miner Res, 2016, 31(9): 1652-1665. DOI: 10.1002/jbmr.2848.
[28]Genêt F, Kulina I, Vaquette C, et al. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle[J]. J Pathol, 2015, 236(2): 229-240. DOI: 10.1002/path.4519.
[29]Salisbury E, Rodenberg E, Sonnet C, et al. Sensory nerve induced inflammation contributes to heterotopic ossification[J]. J Cell Biochem, 2011, 112(10): 2748-2758. DOI: 10.1002/jcb.23225.
[30]Alexander KA, Tseng HW, Fleming W, et al. Inhibition of JAK1/2 Tyrosine Kinases Reduces Neurogenic Heterotopic Ossification After Spinal Cord Injury[J]. Front Immunol, 2019, 10: 377. DOI: 10.3389/fimmu.2019.00377.
[31]Yang C, Gao C, Liu N, et al. The effect of traumatic brain injury on bone healing from a novel exosome centered perspective in a mice model[J]. J Orthop Translat, 2021, 30: 70-81. DOI: 10.1016/j.jot. 2021. 09.003.
[32]Ogata N, Koshizuka Y, Miura T, et al. Association of bone metabolism regulatory factor gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity[J]. Spine, 2002, 27(16): 1765-1771. DOI: 10.1097/00007632-200208150-00015.
[33]Yamamoto K, Kosaka T. [Updates on ossification of posterior longitudinal ligament. Effect of insulin/IGF-1 signals and leptin signals on ossification of the spinal ligament in Zucker fatty rats][J]. Clin Calcium, 2009, 19(10): 1462-1470. PMID: 19794255.
[34]Goto K, Yamazaki M, Tagawa M, et al. Involvement of insulin-like growth factor I in development of ossification of the posterior longitudinal ligament of the spine[J]. Calcif Tissue Inter, 1998, 62(2): 158-165. DOI: 10.1007/s002239900410.
PDF(563 KB)

Accesses

Citation

Detail

Sections
Recommended

/