Chinese Journal Of Clinical Anatomy ›› 2015, Vol. 33 ›› Issue (5): 553-557.doi: 10.13418/j.issn.1001-165x.2015.05.015

Previous Articles     Next Articles

Biomechanical evaluation of decellularized porcine bile duct for the construction of bile duct by tissue engineering

LI Wen-chun, LI Jing, TANG Jie, ZHANG Liang, WANG Fei-hu, CHEN Xiu-ying   

  1. Department of Anatomy, Hubei University of Medicine, Shiyan 442000, China
  • Received:2015-04-23 Online:2015-09-25 Published:2015-10-13

Abstract:

Objective  The porcine common bile ducts were treated with different acellular matrix, the biomechanical change of porcine common bile ducts before and after acellular matrix treatment were evaluated, and an appropriate acellular matrix was explored to provide theoretical basis for the application of bile duct scaffold materials for tissue engineering. Methods Thirty porcine common bile ducts were divided into 5 groups randomly, group A: control group, group B: 0.05% trypsin + nuclease, group C:0.1% SDS + nuclease, group D: 1.0% triton X-100 + nuclease, group E: 1.0% triton X-100 + 0.1% SDS + nuclease. The loading - unloading experiment and ultimate tensile strength experiment were performed using TestResources biomechanical tester. Indexes such as biomechanical material constant (α1, β1, α2, β2), elastic modulus, ultimate tensile strength (UTS) and breaking elongation rate were calculated. Results There were no statistical differences in the biomechanical material constants (α1, β1,α2, β2) of the common bile ducts between group A and two acellular matrix treatment groups D and E (F = 12.21, P = 0.06). The biomechanical material constants of group B and group D were lower than that of group A, group C and group E (P < 0.01). The elastic module of common bile ducts of the two acellular matrix treatment groups D and E were a little larger than that of group A, but without significant difference (P>0.05),the levels of group B and group C were lower than that of group A (P < 0.05). There were no significant differences in UTS value and SOF value between the acellular matrix treatment groups D, E, and group A (P > 0.05). The UTS value of acellular matrix treatment groups B and C was significantly lower than that of group A (P<0.05), and the SOF value was significantly higher than that of group A (P<0.05). Conclusion The acellular matrix treatment effect of 1.0% Triton X - 100 + nuclease and 1.0% Triton X - 100 + 0.1% SDS + nuclease was quite satisfactory, and the biomechanical characteristics of porcine common bile duct were not affected, therefore, it is an ideal acellular method for porcine common bile ducts.

Key words:  Common bile duct, Biomechanics, Tissue engineering, Scaffold-like material; Pig