[1] Deepthi S, Venkatesan J, Kim S K, et al. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93(Pt B): 1338-1353.
[2] Leena RS, Vairamani M, Selvamurugan N. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro[J]. Colloids Surf B Biointerfaces, 2017,158: 308-318.
[3] Oryan A, Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing[J]. Int J Biol Macromol, 2017,104(Pt A):1003-1011.
[4] Ganesh N, Jayakumar R, Koyakutty M, et al. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering[J]. Tissue Eng Part A, 2012, 18(17-18):1867-1881.
[5] Frasnelli M, Cristofaro F, Sglavo VM, et al. Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2017, 71:653-662.
[6] Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(5):R1173-R1187.
[7] Brunelli S, Rovere-Querini P. The immune system and the repair of skeletal muscle[J]. Pharmacol Res, 2008, 58(2):117-121.
[8] Wiendl H, Hohlfeld R, Kieseier BC. Immunobiology of muscle: advances in understanding an immunological microenvironment[J]. Trends Immunol, 2005, 26(7):373-380.
[9] Yammani RR. S100 proteins in cartilage: role in arthritis[J]. Biochim Biophys Acta, 2012,1822(4): 600-606. |