[1] 周初松, 肖文德, 张效三, 等. 腰椎峡部裂翼状记忆合金节段内固定器的研制[J]. 脊柱外科杂志, 2006,14(1):33-37.
[2] Adelt D, Samani J, Kim WK, et al. Coflex® interspinous stabilization:clinical and radiographic results from an international multicenter retrospective study [J]. Paradigm Spine J, 2007, 1(1):1-4.
[3] 朱立新, 王健, 曹延林, 等. 腰椎峡部裂机翼型记忆合金固定装置的有限元分析[J]. 中国临床解剖学杂志, 2012, 30(3):333-336.
[4] Castellvi AE, Huang H, Vestgaarden T, et al. Stress reduction in adjacent level discs via dynamic instrumentation: a finite element analysis [J]. SAS J, 2007, 1(2):74-81.
[5] Etebar S, Cahill DW. Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumention for degenerative instability [J]. J Neurosurg, 1999, 90(2 suppl): 163-169.
[6] Tang SJ, Rebholz BJ. Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A ?nite element study [J]. Orthop Sci, 2011, 16(2):221-228.
[7] Chen WJ, Lai PL, Niu CC, et al. Surgical treatment of adjacent instability after lumbar spine fusion [J]. Spine, 2001, 26 (22): 519-528.
[8] Wang Y, Zheng G, Zhang X, et al. Comparative analysis between shape memory alloy-based correction and traditional correction technique in pedicle screws constructs for treating severe scoliosis [J]. Europe Spine J, 2010,19(3): 394-399.
[9] Long M, Rack HJ. Titanium alloys in total joint replacement--a material science perspective [J]. Biomaterials, 1998, 19: 1621-1639.
[10]Zander T, Rohlmann A, Burra NK, et al. Effect of a posterior dynamic implant adjacent to a rigid spinal fixator [J]. Clin Biomech, 2006, 21(8):767-774.
[11]于博, 靳安民, 方国芳, 等. 腰椎弹性内固定与刚性内固定的应力对比研究 [J]. 中国临床解剖学杂志, 2009, 27(4):469-473.
[12]李海波, 杰方, 陈其昕. 髓核摘除术对腰椎生物力学特性影响的有限元研究[J]. 中国临床解剖学杂志, 2011, 29(1):89-93.
[13]Zander T, Rohlmann A, Calisse J, et al. Estimation of muscle forces in the lumbar spine during upper-body inclination[J]. Clin Biomech, 2001,16(suppl 1):73-80. |