[1] |
Dai B, Mao D, Garrett WE, et al. Anterior cruciate ligament injuries in soccer: Loading mechanisms, risk factors, and prevention programs[J]. Journal of Sport and Health Science, 2014, 3(4): 299-306.
|
[2] |
Dragoo JL, Castillo TN, Braun HJ, et al. Prospective correlation between serum relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes[J]. Am J Sports Med, 2011, 39(10): 2175-2180.
|
[3] |
Wetters N, Weber AE, Wuerz TH, et al. Mechanism of injury and risk factors for anterior cruciate ligament injury[J]. Operative Techniques in Sports Medicine, 2016, 24(1): 2-6.
|
[4] |
Alentorn-Geli E, Pelfort X, Mingo F, et al. An evaluation of the association between radiographic intercondylar notch narrowing and anterior cruciate ligament injury in men: the notch angle is a better parameter than notch width[J]. Arthroscopy, 2015, 31(10): 2004-2013.
|
[5] |
李豪, 吴震宇, 王大麟. 股骨髁间窝及胫骨平台后倾角的MRI测量与前交叉韧带损伤的相关性研究[J]. 中国骨与关节损伤杂志, 2017, 32(6): 585-588.
|
[6] |
Englander ZA, Cutcliffe HC, Utturkar GM, et al. In vivo assessment of the interaction of patellar tendon tibial shaft angle and anterior cruciate ligament elongation during flexion[J]. J Biomech, 2019, 90(11): 123-127.
|
[7] |
Hoteya K, Kato Y, Motojima S, et al. Association between intercondylar notch narrowing and bilateral anterior cruciate ligamentinjuries in athletes[J]. Arch Orthop Trauma Surg, 2011, 131(3): 371-376.
|
[8] |
Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes[J]. Am J Sports Med, 1993, 21(4): 535-539.
|
[9] |
Domzalski M, Grzelak P, Gabos P. Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging[J]. Int Orthop, 2010, 34(5): 703-707.
|
[10] |
Webb JM, Salmon LJ, Leclerc E, et al. Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient[J]. Am J Sports Med, 2013, 41(12): 2800-2804.
|
[11] |
Jaecker V, Drouven S, Naendrup JH, et al. Increased medial and lateral tibial posterior slopes are independent risk factors for graft failure following ACL reconstruction[J]. Arch Orthop Trauma Surg, 2018, 138(10): 1423-1431.
|
[12] |
DeMorat G, Weinhold P, Blackburn T, et al. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury[J]. Am J Sports Med, 2004, 32(2): 477-483.
|
[13] |
Beynnon BD, Hall JS, Sturnick DR, et al. Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis[J]. Am J Sports Med, 2014, 42(5): 1039-1048.
|
[14] |
Uhorchak JM, Scoville CR, Williams GN, et al. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets[J]. Am J Sports Med, 2003, 31(6): 831-842.
|
[15] |
K S, Chamala T, Kumar A. Comparison of anatomical risk factors for noncontact anterior cruciate ligament injury using magnetic resonance imaging[J]. J Clin Orthop Trauma, 2019, 10(1): 143-148.
|