Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (2): 242-245.doi: 10.13418/j.issn.1001-165x.2022.2.24
Previous Articles Next Articles
Zhu Zhengya, Liu Shaoyu*
Received:
2021-04-18
Online:
2022-03-25
Published:
2022-04-12
CLC Number:
Zhu Zhengya, Liu Shaoyu. Research progress of the mechanism of mechanical stimulation induced heterotopic ossification of ligament and tendon[J]. Chinese Journal of Clinical Anatomy, 2022, 40(2): 242-245.
[1] | Zhang Q, Zhou D, Wang H, et al. Heterotopic ossification of tendon and ligament[J]. J Cell Mol Med, 2020, 24(10): 5428-5437. DOI: 10.1111/jcmm.15240. |
[2] | Ramirez DM, Ramirez MR, Reginato AM, et al. Molecular and cellular mechanisms of heterotopic ossification[J]. Histol Histopathol, 2014, 29(10): 1281-1285. DOI: 10.14670/HH-29.1281. |
[3] | Nishida N, Kanchiku T, Kato Y, et al. Cervical ossification of the posterior longitudinal ligament: Biomechanical analysis of the influence of static and dynamic factors[J]. J Spinal Cord Med, 2015, 38(5): 593-598. DOI: 10.1179/2045772314Y.0000000221. |
[4] | Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal stem cell differentiation[J]. J Anat, 2015, 227(6): 717-731. DOI: 10.1111/joa.12243. |
[5] | Kim SI, Ha KY, Lee JW, et al. Prevalence and related clinical factors of thoracic ossification of the ligamentum flavum-a computed tomography-based cross-sectional study[J]. Spine J, 2018, 18(4): 551-557. DOI: 10.1016/j.spinee.2017.08.240. |
[6] | Liang HF, Liu GB, Lu SY, et al. Epidemiology of ossification of the spinal ligaments and associated factors in the Chinese population: a cross-sectional study of 2000 consecutive individuals[J]. BMC Musculoskelet Disord, 2019, 20(1): 253. DOI: 10.1186/s12891-019-2569-1. |
[7] | Hirabayashi K, Miyakawa J, Satomi K, et al. Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament[J]. Spine (Phila Pa 1976), 1981, 6(4): 354-364. DOI: 10.1097/00007632-198107000-00005. |
[8] | Kang MS, Kim KH, Park JY, et al. Progression of cervical ossification of posterior longitudinal ligament after laminoplasty or laminectomy with posterior Ffixation[J]. Clin Spine Surg, 2019, 32(9): 363-368. DOI: 10.1097/BSD.0000000000000898. |
[9] | Katsumi K, Izumi T, Ito T, et al. Posterior instrumented fusion suppresses the progression of ossification of the posterior longitudinal ligament: a comparison of laminoplasty with and without instrumented fusion by three-dimensional analysis[J]. Eur Spine J, 2016, 25(5): 1634-1640. DOI: 10.1007/s00586-015-4328-9. |
[10] | Matsunaga S, Sakou T, Taketomi E, et al. Effects of strain distribution in the intervertebral discs on the progression of ossification of the posterior longitudinal ligaments[J]. Spine (Phila Pa 1976), 1996, 21(2): 184-189. DOI: 10.1097/00007632-199601150-00005. |
[11] | Khuyagbaatar B, Kim K, Park WM, et al. Increased stress and strain on the spinal cord due to ossification of the posterior longitudinal ligament in the cervical spine under flexion after laminectomy[J]. Proc Inst Mech Eng H, 2017, 231(9): 898-906. DOI: 10.1177/09544119177 18222. |
[12] | Goldberg G, Stockhausen S. Atlas of anatomy, general anatomy and musculoskeletal system[J]. Am J Phys Med Rehabil, 2015, 94(2): e23-e24. |
[13] | Hou XF, Sun CG, Liu XG, et al. Clinical features of thoracic spinal stenosis-associated myelopathy: a retrospective analysis of 427 cases[J]. Clin Spine Surg, 2016, 29(2): 86-89. DOI: 10.1097/BSD. 00000000 00000081. |
[14] | Ando K, Imagama S, Ito Z, et al. Predictive factors for a poor surgical outcome with thoracic ossification of the ligamentum flavum by multivariate analysis: a multicenter study[J]. Spine (Phila Pa 1976), 2013, 38(12): E748-754. DOI: 10.1097/BRS.0b013e31828ff736. |
[15] | Ando K, Imagama S, Ito Z, et al. Progressive relapse of ligamentum flavum ossification following decompressive surgery[J]. Asian Spine J, 2014, 8(6): 835-839. DOI: 10.4184/asj.2014.8.6.835. |
[16] | Ahmadi SA, Suzuki A, Terai H, et al. Anatomical analysis of the human ligamentum flavum in the thoracic spine: clinical implications for posterior thoracic spinal surgery[J]. J Orthop Sci, 2019, 24(1): 62-67. DOI: 10.1016/j.jos.2018.08.023. |
[17] | Li Y, Jacox LA, Little SH, et al. Orthodontic tooth movement: the biology and clinical implications[J]. Kaohsiung J Med Sci, 2018, 34(4): 207-214. DOI: 10.1016/j.kjms.2018.01.007. |
[18] | Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt[J]. Eur J Orthod, 2006, 28(3): 221-240. DOI: 10.1093/ejo/cjl001. |
[19] | Feller L, Khammissa RAG, Schechter I, et al. Periodontal biological events associated with orthodontic tooth movement: the biomechanics of the cytoskeleton and the extracellular matrix[J]. Scientific World Journal, 2015, 2015: 894123. DOI: 10.1155/2015/894123. |
[20] | Ko JWK, Tompson JD, Sholder DS, et al. Heterotopic ossification of the long head of the triceps after reverse total shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2016, 25(11): 1810-1815. DOI: 10.1016/j.jse.2016.03.006. |
[21] | Olsen E, Endrizzi D, Stephenson M, et al. Characteristic heterotopic ossification of the proximal humerus after total shoulder arthroplasty[J]. Skeletal Radiol, 2021, 50(5): 973-979. DOI: 10.1007/s00256-020-03653-z. |
[22] | Magnusson SP, Agergaard AS, Couppé C, et al. Heterotopic ossification after an achilles tendon rupture cannot be prevented by early functional rehabilitation: a cohort study[J]. Clin Orthop Relat Res, 2020, 478(5): 1101-1108. DOI: 10.1097/CORR.0000000000001085. |
[23] | Kirchgesner T, Larbi A, Omoumi P, et al. Drug-induced tendinopathy: from physiology to clinical applications[J]. Joint Bone Spine, 2014, 81(6): 485-492. DOI: 10.1016/j.jbspin.2014.03.022. |
[24] | Tsukamoto N, Maeda T, Miura H, et al. Repetitive tensile stress to rat caudal vertebrae inducing cartilage formation in the spinal ligaments: a possible role of mechanical stress in the development of ossification of the spinal ligaments[J]. J Neurosurg Spine, 2006, 5(3): 234-242. DOI: 10.3171/spi.2006.5.3.234. |
[25] | Petri M, Lu P, Omar M, et al. In vivo heterotopic culturing of prefabricated tendon grafts with mechanical stimulation in a sheep model[J]. Knee, 2018, 25(3): 381-391. DOI: 10.1016/j.knee. 2018. 02.006. |
[26] | Karner CM, Lee SY, Long F. Bmp induces osteoblast differentiation through both smad4 and mTORC1 signaling[J]. Mol Cell Biol, 2017, 37(4): e00253-16. DOI: 10.1128/MCB.00253-16. |
[27] | Chen YP, Gao H, Yin QS, et al. ER stress activating ATF4/CHOP-TNF-α signaling pathway contributes to alcohol-induced disruption of osteogenic lineage of multipotential mesenchymal stem cell[J]. Cell Physiol Biochem, 2013, 32(3): 743-754. DOI: 10.1159/000354476. |
[28] | Shi L, Miao JH, Chen DY, et al. Endoplasmic reticulum stress regulates mechanical stress-induced ossification of posterior longitudinal ligament[J]. Eur Spine J, 2019, 28(10): 2249-2256. DOI: 10.1007/s00586-019-06074-2. |
[29] | Chen Y, Yang HS, Miao JH, et al. Roles of the endoplasmic reticulum stress transducer OASIS in ossification of the posterior longitudinal ligament[J]. Clin Spine Surg, 2017, 30(1): E19-E24. DOI: 10.1097/BSD.0b013e3182908c21. |
[30] | Shi L, Shi GD, Li TF, et al. The endoplasmic reticulum stress response participates in connexin 43-mediated ossification of the posterior longitudinal ligament[J]. Am J Transl Res, 2019, 11(7): 4113-4125. PMID: 31396322. |
[31] | Yang SY, Wei FL, Hu LH, et al. PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force[J]. Cell Signal, 2016, 28(8): 880-886. DOI: 10.1016/j.cellsig.2016.04.003. |
[32] | Chen D, Chen Y, Li TF, et al. Role of Cx43-mediated NFκβ signaling Ppathway in ossification of posterior longitudinal ligament: an in vivo and in vitro study[J]. Spine (Phila Pa 1976), 2017, 42(23): E1334-E1341. DOI: 10.1097/BRS.0000000000002165. |
[33] | Yang HS, Lu XH, Chen DY, et al. Mechanical strain induces Cx43 expression in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament[J]. Eur Spine J, 2011, 20(9): 1459-1465. DOI: 10.1007/s00586-011-1767-9. |
[34] | Yang HS, Lu XH, Chen DY, et al. Upregulated expression of connexin43 in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament[J]. Spine (Phila Pa 1976), 2011, 36(26): 2267-2274. DOI: 10.1097/BRS. 0b013e 31820ccfc6. |
[35] | Agarwal S, Loder SJ, Cholok D, et al. Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon[J]. Stem Cells, 2017, 35(3): 705-710. DOI: 10.1002/stem.2515. |
[36] | Dey D, Bagarova J, Hatsell SJ, et al. Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification[J]. Sci Transl Med, 2016, 8(366): 366ra163. DOI: 10.1126/scitranslmed.aaf1090. |
[37] | Olmsted-Davis EA, Salisbury EA, Hoang D, et al. Progenitors in peripheral nerves launch heterotopic ossification[J]. Stem Cells Transl Med, 2017, 6(4): 1109-1119. DOI: 10.1002/sctm.16-0347. |
[38] | Kisiday JD, Frisbie DD, McIlwraith CW, et al. Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines[J]. Tissue Eng Part A, 2009, 15(10): 2817-2824. DOI: 10.1089/ten.TEA.2008.0357. |
[39] | Pelaez D, Huang CYC, Cheung HS. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds[J]. Stem Cells Dev, 2009, 18(1): 93-102. DOI: 10.1089/scd.2008.0030. |
[40] | Kupcsik L, Stoddart MJ, Li Z, et al. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering[J]. Tissue Eng Part A, 2010, 16(6): 1845-1855. DOI: 10.1089/ten.TEA.2009.0531. |
[41] | Huang CYC, Hagar KL, Frost LE, et al. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells[J]. Stem Cells, 2004, 22(3): 313-323. DOI: 10.1634/stemcells.22-3-313. |
[42] | Haugh MG, Meyer EG, Thorpe SD, et al. Temporal and spatial changes in cartilage-matrix-specific gene expression in mesenchymal stem cells in response to dynamic compression[J]. Tissue Eng Part A, 2011, 17(23-24): 3085-3093. DOI 10.1089/ten.tea.2011.0198. |
[43] | Thorpe SD, Buckley CT, Vinardell T, et al. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation[J]. Ann Biomed Eng, 2010, 38(9): 2896-2909. DOI: 10.1007/s10439-010-0059-6. |
[44] | Thorpe SD, Buckley CT, Steward AJ, et al. European Society of Biomechanics S.M. Perren Award 2012: the external mechanical environment can override the influence of local substrate in determining stem cell fate[J]. J Biomech, 2012, 45(15): 2483-2492. DOI: 10.1016/j.jbiomech.2012.07.024. |
[45] | Nakajima H, Watanabe S, Honjoh K, et al. Expression analysis of susceptibility genes for ossification of the posterior longitudinal ligament of the cervical spine in human OPLL-related tissues and a spinal hyperostotic mouse (ttw/ttw)[J]. Spine (Phila Pa 1976), 2020, 45(22): E1460-e1468. DOI: 10.1097/BRS.0000000000003648. |
[46] | LaBonty M, Yelick PC. Animal models of fibrodysplasia ossificans progressiva[J]. Dev Dyn, 2018, 247(2): 279-288. DOI: 10.1002/dvdy.24606. |
[47] | Stanley A, Heo SJ, Mauck RL, et al. Elevated BMP and mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis[J]. J Bone Miner Res, 2019, 34(10): 1894-1909. DOI: 10.1002/jbmr.3760. |
[48] | Haupt J, Stanley A, McLeod CM, et al. ACVR1(R206H) FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification[J]. Mol Biol Cell, 2019, 30(1): 17-29. DOI: 10.1091/mbc.E18-05-0311. |
[49] | Suzuki H, Ito Y, Shinohara M, et al. Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis[J]. Proc Natl Acad Sci U S A, 2016, 113(28): 7840-7845. DOI: 10.1073/pnas.1522054113. |
[50] | Liu H, Xu JY, Jiang RL. Mkx-deficient mice exhibit hedgehog signaling-dependent ectopic ossification in the achilles tendons[J]. J Bone Miner Res, 2019, 34(3): 557-569. DOI: 10.1002/jbmr.3630. |
[1] | Jiang Jianhong, Duan Renpeng, Li Xiaofeng. Application of three-dimensional visualization technology in the anatomical variations of hilar bile ducts in Chinese population [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 1-4. |
[2] | Guo Hongzhi, Wang Yu, Zhang Jiaqi, Liang Haibin, Ma Ziwei, Feng Wei, Wu You, Si Ziyi. Evaluation of placental vascular structure in preeclampsia by vascular casting combined with CT three-dimensional model [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 5-10. |
[3] | Li Jiawei, Zhang Jing, Li Canran, Lan Wenjie, Ji Qingyu, Guo Zhiyong, Zhang Yunfeng, Liu Qi, Chen Qingwei, Li Xiaohe. X-ray measurement of proximal femur anatomical parameters in Mongolian population [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 11-16. |
[4] | . Digital measurement and clinical significance of occipitocervical Angle and posterior occipitocervical Angle in children and adolescents [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 17-20. |
[5] | Li Wen, Yang Siyi, Huang Lei, Qing Jiwen, Jiang Songtao, Zhang Lei. Morphological characteristics and clinical significance of Lisfranc ligament based on MRI [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 21-25. |
[6] | Li Fanfan, Xu Yang, Wang Xiaoxu. Therapeutic effect of shikonin on the treatment of granuloma lobular mastitis in model rats by regulating Nrf2/HO-1 signaling pathway [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 26-32. |
[7] | Wang Xinghang, Ding Jiayuan, Li Fang, Bao Cuifen, Yan Lijing. Ginsenoside Rg1 reduces the inflammatory response of microglia after oxygen glucose deprivation/resupply by inhibiting the NLRP3 inflammasome pathway [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 33-41. |
[8] | Cheng Yingying, Wu Jianjun, Cai Haiyan , Jiao Xunwen, Ma Jiangbo, Ding Yinxiu. Activation and functional changes of astrocytes cultured in vitro under inflammatory stimulation [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 42-46. |
[9] | Qi Zhi, Yang Li, Jia Qiuye, Chen Haolun, Duan Zhaoda, Wu Chunyun. Edaravone regulates Sirt3 expression in lipopolysaccharide-activated microglia via MAPKs signaling pathway [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 47-53. |
[10] | Zhang Jingjing, Wang Hongxin. Protective effect of Baicalin on rats with pulmonary hypertension through PDGF/P38 MAPK signaling pathway [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 54-58. |
[11] | Yue Qin, Chen Rongli, Xiong Jingxi, Wang Tingyi, Cai Zhiheng, Yi Qiushi, Zeng Xinyi. Effect of Bletilla striata polysaccharides on the choke-area of cross-boundary flap in rats [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 59-64. |
[12] | Li Xiaoyu , Zhang Lei , Fu Lei , Li Dongbo , Wang Guoyou. Finite element study on the treatment of Sanders type II calcaneal fracture with three-step reduction method [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 65-70. |
[13] | Wu Yanfei, Ma Jianxiong, Lu Bin, Wang Ying, Bai Haohao, Jin Hongzhen, Ma Xinlong. Study on the correlation between the reconstruction of grayscale values using CT post-processing technology and the compressive strength of the endplate [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 71-76. |
[14] | Zhuang Wanqiang, Tang Yi, Luo Yonggang, Zhang Hui. An early and mid-term retrospective study of the effects of arthroscopy combined with high tibial osteotomy on patellar position and patellofemoral joint function [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 77-82. |
[15] | Luo Ying, Dou Weiyu, Wu Xiaohang, Chen Jingkun, Peng Changgui, Pan Jianying . Risk factors of postoperative complications of calcaneal fractures treated with hippocampal plate internal fixation through minimally invasive method [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 83-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|