[1] |
Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease[J]. Nat Neurosci, 2017, 20(2): 136-144. DOI: 10.1038/nn.4475.
|
[2] |
Grassivaro F, Martino G, Farina C. The phenotypic convergence between microglia and peripheral macrophages during development and neuroinflammation paves the way for new therapeutic perspectives[J]. Neural Regen Res, 2021, 16(4): 635-637. DOI: 10.4103/1673-5374.295272.
|
[3] |
Kracht L, Borggrewe M, Eskandar S, et al. Human fetal microglia acquire homeostatic immune-sensing properties early in development[J]. Science, 2020, 369(6503): 530-537. DOI: 10.1126/science.aba5906.
|
[4] |
Barger N, Keiter J, Kreutz A, et al. Microglia: an intrinsic component of the proliferative zones in the fetal rhesus monkey (macaca mulatta) cerebral cortex[J]. Cereb Cortex, 2019, 29(7): 2782-2796. DOI: 10.1093/cercor/bhy145.
|
[5] |
Mondo E, Becker SC, Kautzman AG, et al. A developmental analysis of juxtavascular microglia dynamics and interactions with the vasculature[J]. J Neurosci, 2020, 40(34): 6503-6521. DOI: 10.1523/JNEUROSCI.3006-19.2020.
|
[6] |
Ueno M, Fujita Y, Tanaka T, et al. Layer V cortical neurons require microglial support for survival during postnatal development[J]. Nat Neurosci, 2013, 16(5): 543-551. DOI: 10.1038/nn.3358.
|
[7] |
Serdar M, Kempe K, Rizazad M, et al. Early pro-inflammatory microglia activation after inflammation-sensitized hypoxic-ischemic brain injury in neonatal rats[J]. Front Cell Neurosci, 2019, 13: 237. DOI: 10.3389/fncel.2019.00237.
|
[8] |
Fernández-López D, Faustino J, Klibanov AL, et al. Microglial cells prevent hemorrhage in neonatal focal arterial stroke[J]. J Neurosci, 2016, 36(10): 2881-2893. DOI: 10.1523/JNEUROSCI.0140-15.2016.
|
[9] |
Doycheva DM, Hadley T, Li L, et al. Anti-neutrophil antibody enhances the neuroprotective effects of G-CSF by decreasing number of neutrophils in hypoxic ischemic neonatal rat model[J]. Neurobiol Dis, 2014, 69: 192-199. DOI: 10.1016/j.nbd.2014.05.024.
|
[10] |
Otxoa-de-Amezaga A, Miró-Mur F, Pedragosa J, et al. Microglial cell loss after ischemic stroke favors brain neutrophil accumulation[J]. Acta Neuropathol, 2019, 137(2): 321-341. DOI: 10.1007/s00401-018-1954-4.
|
[11] |
Feng L, Dou C, Xia Y, et al. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery[J]. ACS Nano, 2021, 15(2): 2263-2280. DOI: 10.1021/acsnano.0c07973.
|
[12] |
Smith P, Mottahedin A, Svedin P, et al. Peripheral myeloid cells contribute to brain injury in male neonatal mice[J]. J Neuroinflammation, 2018, 15(1): 301. DOI: 10.1186/s12974-018-1344-9.
|
[13] |
Chen HR, Chen CW, Kuo YM, et al. Monocytes promote acute neuroinflammation and become pathological microglia in neonatal hypoxic-ischemic brain injury[J]. Theranostics, 2022, 12(2): 512-529. DOI: 10.7150/thno.64033.
|
[14] |
Sheridan SD, Thanos JM, De Guzman RM, et al. Umbilical cord blood-derived microglia-like cells to model COVID-19 exposure[J]. Transl Psychiatry, 2021, 11(1): 179. DOI: 10.1038/s41398-021-01287-w.
|
[15] |
Beckmann L, Obst S, Labusek N, et al. Regulatory T cells contribute to sexual dimorphism in neonatal hypoxic-ischemic brain injury[J]. Stroke, 2022, 53(2):381-390. DOI: 10.1161/STROKEAHA.121. 037537.
|
[16] |
Sen T, Saha P, Gupta R, et al. Aberrant er stress induced neuronal-IFNβ elicits white matter injury due to microglial activation and T-cell infiltration after TBI[J]. J Neurosci, 2020, 40(2): 424-446. DOI: 10.1523/JNEUROSCI.0718-19.2019.
|
[17] |
Mottahedin A, Joakim Ek C, Truvé K, et al. Choroid plexus transcriptome and ultrastructure analysis reveals a TLR2-specific chemotaxis signature and cytoskeleton remodeling in leukocyte trafficking[J]. Brain Behav Immun, 2019, 79: 216-227. DOI: 10.1016/j.bbi.2019.02.004.
|
[18] |
Li F, Xu D, Hou K, et al. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells[J]. J Thromb Thrombolysis, 2020, 50(4): 874-885. DOI: 10.1007/s11239-020-02098-4.
|
[19] |
Li YJ, Shi SX, Liu Q, et al. Targeted role for sphingosine-1-phosphate receptor 1 in cerebrovascular integrity and inflammation during acute ischemic stroke[J]. Neurosci Lett, 2020, 735: 135160. DOI: 10.1016/j.neulet.2020.135160.
|
[20] |
Sapkota A, Gaire BP, Kang MG, et al. S1P(2) contributes to microglial activation and M1 polarization following cerebral ischemia through ERK1/2 and JNK[J]. Sci Rep, 2019, 9(1): 12106. DOI: 10.1038/s41598-019-48609-z.
|
[21] |
Thornton C, Jones A, Nair S, et al. Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxic-ischaemic brain injury[J]. FEBS Lett, 2018, 592(5): 812-830. DOI: 10.1002/1873-3468.12943.
|
[22] |
Liu Y, Wang H, Liu N, et al. Oxymatrine protects neonatal rat against hypoxic-ischemic brain damage via PI3K/Akt/GSK3β pathway[J]. Life Sci, 2020, 254: 116444. DOI: 10.1016/j.lfs.2019.04.070.
|
[23] |
Smith PL, Hagberg H, Naylor AS, et al. Neonatal peripheral immune challenge activates microglia and inhibits neurogenesis in the developing murine hippocampus[J]. Dev Neurosci, 2014, 36(2): 119-131. DOI: 10.1159/000359950.
|
[24] |
Morton MC, Neckles VN, Seluzicki CM, et al. Neonatal subventricular zone neural stem cells release extracellular vesicles that act as a microglial morphogen[J]. Cell Rep, 2018, 23(1): 78-89. DOI: 10.1016/j.celrep.2018.03.037.
|