[1] Kumaresan S, Yoganandan N, Pintar FA, et al. Biomechanical study of pediatric human cervical spine: a finite element approach[J]. J Biomech Eng, 2000, 122(1): 60-71.
[2] Rohlmann A, Burra NK, Zander T, et al. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis[J]. Eur Spine J, 2007, 16(8): 1223-1231.
[3] Dabirrahmani D, Becker S, Hogg M, et al. Mechanical variables affecting balloon kyphoplasty outcome--a finite element study[J]. Comput Met Biomech Biomed Eng, 2011, 15(3): 211-220.
[4] Schmidt H, Galbusera F, Rohlmann A, et al. Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis[J]. Eur Spine J, 2012, 21(Suppl 5): 663-674.
[5] Shirazi-Adl SA, Shrivastava SC, Ahmed AM. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study[J]. Spine, 1984, 9(2): 120-134.
[6] Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model[J]. Spine, 1996, 21(22): 2570-2679.
[7] Zhong ZC, Wei SH, Wang JP, et al. Finite element analysis of the lumbar spine with a new cage using a topology optimization method[J]. Med Eng Phys, 2006, 28(1): 90-98.
[8] Rohlmann A, Bauer L, Zander T, et al. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data[J]. J Biomech, 2006, 39(6): 981-989.
[9] Schmidt H, Heuer F, Drumm J, et al. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment[J]. Clin Biomech, 2007, 22(4): 377-384.
[10] Schmidt H, Heuer F, Wilke HJ. Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system[J]. J Biomech, 2009, 42(1): 48-54.
[11] Ayturk UM, Puttlitz CM. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine[J]. Comput Method Biomech Biomed Eng, 2011, 14(8): 695-705.
[12] Jones AC, Wilcox RK. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis[J]. Med Eng Phys, 2008, 30(10): 1287-1304.
[13] Dreischarf M, Zander T, Bergmann G, et al. A non-optimized follower load path may cause considerable intervertebral rotations[J]. J Biomech, 2010, 43(13): 2625-2658.
[14] Panjabi MM, Oxland TR, Yamamoto I, et al. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves[J]. J Bone Joint Surg AV, 1994,76(3): 413-424.
[15] Schmidt H, Heuer F, Simon U, et al. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus[J]. Clin Biomech, 2006, 21(4): 337-344.
[16] Eberlein R, Holzapfel GA, Fröhlich M. Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus[J]. Comput Mech, 2004, 34(2): 147-163.
[17] Xu M, Yang J, Lieberman IH, et al. Lumbar spine finite element model for healthy subjects: development and validation[J]. Comput Method Biomech Biomed Eng, 2017,20(1): 1-15.
[18]Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression[J]. Spine, 1986, 11(9): 914-927.
[19]Alizadeh M, Kadir MRA, Saldanha S. Biomechanical effects of short construct spine posterior fixation, in thoracolumbar region with L1 burst fracture[C]. IEEE EMBS Conference on Biomedical Engineering & Sciences(IECBES) 2010. p. 454-459.
[20]Pearcy MJ, Bogduk N. Instantaneous axes of rotation of the lumbar intervertebral joints[J]. Spine, 1988, 13(9): 1033-1041.
[21]Zander T, Rohlmann A, Bergmann G. Influence of different artificial disc kinematics on spine biomechanics[J]. Clin Biomech, 2009, 24(2): 135-142. |