Chinese Journal of Clinical Anatomy ›› 2019, Vol. 37 ›› Issue (5): 603-607.doi: 10.13418/j.issn.1001-165x.2019.05.027
HUANG Da1, LI Jin-sheng2, LV Hao3, ZHANG Hong-wu1
Received:
2018-12-29
Online:
2019-09-25
Published:
2019-09-26
CLC Number:
HUANG Da, LI Jin-sheng, LV Hao, ZHANG Hong-wu. Research progress in biological 3D printing stem cells[J]. Chinese Journal of Clinical Anatomy, 2019, 37(5): 603-607.
[1] | 高建平, 马朋高, 于九皋, 等. 组织工程与生物可降解高分子骨架[J]. 高分子通报, 2000, (4): 89-95. |
[2] | 曹谊林, 周广东, 刘伟, 等. 组织工程与创伤医学[J]. 中华创伤杂志, 2005, 21(1): 25-28. |
[3] | 张志雄, 胡帼颖, 温叶飞, 等. 组织工程技术的发展现状及趋势(四)-组织构建与支撑技术[J]. 透析与人工器官, 2009, 20(4): 25-31. |
[4] | 裴国献. 组织工程学-21世纪面临的机遇与挑战[J]. 中华创伤骨科杂志, 2006, (1): 4-7. |
[5] | Hull CW. Apparatus for production of three-dimensional objects by stereolithography[P]. 1986, US Pat 4575330. |
[6] | Murphy SV, Atala A. 3D bioprinting of tissues and organs[J]. Nat Biotechnol, 2014, 32(8): 773-785. |
[7] | Gao G, Huang Y, Schilling AF, et al, Organ bioprinting: are we there yet[J]. Adv Healthc Mater, 2018, 7(1): 1701018. |
[8] | Huang Y, Zhang XF, Gao G, et al. 3D bioprinting and the current applications in tissue engineering[J]. Biotechnol J, 2017, 12(8): 1600734. |
[9] | Donderwinkel I, van Hest JC, Neil R Cameron. Bio-inks for 3D bioprinting: recent advances and future prospects[J]. Polym Chem, 2017, 8(31) :4451-4471. |
[10] | Garreta E, Oria R, Tarantino C, et al. Tissue engineering by decellularization and 3D bioprinting[J]. Materials Today, 2017: 166-178. |
[11] | Xu C, Chai W, Huang Y, et al. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes[J]. Biotechnol Bioeng, 2012, 109(12): 3152-3160. |
[12] | Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting[J]. Int Mater Rev, 2014, 59(8): 430-448. |
[13] | Xu T, Zhao W, Zhu JM, et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology[J]. Biomaterials, 2013, 34(1): 130-139. |
[14] | Delrot P, Modestino MA, Gallaire F, et al. Inkjet printing of viscous monodisperse microdroplets by laser-induced flow focusing[J]. Phys Rev Applied, 2016, 6(2):024003. |
[15] | Lee H, Yoo JJ, Kang HW, et al. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology[J]. Biofabrication, 2016, 8(1): 015011. |
[16] | Devillard R, Pagès E, Correa MM, et al. Cell patterning by laser-assisted bioprinting[J]. Methods Cell Biol, 2014, 119(119C): 159-174. |
[17] | Burks HE, Phamduy TB, Azimi MS, et al. Laser direct-write onto live tissues: a novel model for studying cancer cell migration[J]. J Cell Physiol, 2016, 231(11): 2333-2338. |
[18] | Au AK, Lee W, Folch A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices[J]. Lab Chip, 2014, 14(7): 1294-1301. |
[19] | Hong S, Sycks D, Chan HF, et al. 3D Printing of highly stretchable and tough hydrogels into complex, cellularized structures[J]. Adv Mater, 2015, 27(27): 4035-4040. |
[20] | Wang Z, Abdulla R, Parker B, et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks[J]. Biofabrication, 2015, 7(4): 045009. |
[21] | Harrison SE, Sozen B, Christodoulou N, et al. Assembly of embryonic and extra-embryonic stem cells to mimic embryogenesis in vitro[J]. Science, 2017, 356(6334): eaal1810. |
[22] | Li Q, Hutchins AP, Chen Y, et al. A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes[J]. Nat Commun, 2017, 3(8): 15166. |
[23] | Guo F, Li L, Li J, et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells[J]. Cell Res, 2017, 27(8): 967-988. |
[24] | Guo X, Gu X, Hareshwaree S, et al. Induced pluripotent stem cell-conditional medium inhibits H9C2 cardiomyocytes apoptosis via autophagy flux and Wnt/β-catenin pathway[J]. J Cell Mol Med, 2019, 23(6): 4358-4374. |
[25] | Shi Y, Inoue H, Wu JC, et al. Induced pluripotent stem cell technology: a decade of progress[J]. Nat Rev Drug Discov, 2017, 16(2): 115-130. |
[26] | Del Carmen Ortuño-Costela M, García-López M, Cerrada V, et al. iPSCs: a powerful tool for skeletal muscle tissue engineering[J]. J Cell Mol Med, 2019, 23(6): 3784-3794. |
[27] | Wang Y, Hao L, Li H, et al. Abnormal nuclear aggregation and myotube degeneration in myotonic dystrophy type1[J]. Neurol Sci, 2019, 40(6): 1255-1265. |
[28] | Soeda S, Saito R, Fujita N, et al. Neuronal differentiation defects in induced pluripotent stem cells derived from a Prader-Willi syndrome patient[J]. Neurosci Lett, 2019, 703: 162-167. |
[29] | Schneider S, Unger M, van Griensven M, et al. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine[J]. Eu J Med Res, 2017, 22(1):17-27. |
[30] | Bertozzi N, Simonacci F, Grieco MP, et al. The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing[J]. Ann Med Surg(Lond), 2017, 20(C): 41-48. |
[31] | Almalki SG, Agrawal DK. ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells[J]. Stem Cell Res Ther, 2017, 8(1): 113-126. |
[32] | Shi J, Liang J, Guo B, et al. Adipose-derived stem cells cocultured with chondrocytes promote the proliferation of chondrocytes[J]. Stem Cells Int, 2017, 2017(3): 1-17. |
[33] | Song K, Li L, Yan X, et al. Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β-glycerophosphate/collagen hybrid hydrogel[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1): 231-240. |
[34] | Ohishi M, Schipani E. Bone marrow mesenchymal stem cells[J]. J Cell Biochem, 2010, 109(2): 277-282. |
[35] | Li L, He Y, Chen X, et al. Comparison of proliferative and multilineage differentiation potential of rabbit bone marrow mesenchymal stem cells and wharton's jelly mesenchymal stem cells[J]. Journal of Biomaterials & Tissue Engineering, 2017, 7(11): 1154-1162. |
[36] | Chen Y, Wang C, Huang Q, et al. Caveolin-1 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into cardiomyocytes[J]. Cardiology, 2017, 136(1): 40-48. |
[37] | Rutz AL, Hyland KE, Jakus AE, et al. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels[J]. Adv Mater, 2015, 27(9): 1607-1614. |
[38] | Bigi A, Cojazzi G, Panzavolta S, et al. Stabilization of gelatin fifilms by crosslinking with genipin[J]. Biomaterials, 2002, 23(24): 4827-4832 |
[39] | Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels[J]. Biofabrication, 2014, 6(2): 024105. |
[40] | 关林波, 但卫华, 曾睿, 等. 明胶及其在生物材料中的应用[J]. 材料导报, 2006, 20(s2): 380-383. |
[41] | Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering[J]. Acta Biomater, 2014, 10(4): 1646-1662. |
[42] | Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink[J]. Adv Mater, 2016, 28(4): 677-684. |
[43] | Arlov Ø, Öztürk E, Steinwachs M, et al. Biomimetic sulphated alginate hydrogels suppress IL-1β-induced inflammatory responses in human chondrocytes[J]. Eur Cell Mater, 2017, 33: 76-89. |
[44] | Saldin LT, Cramer MC, Velankar SS, et al. Extracellular matrix hydrogels from decellularized tissues: structure and function[J]. Acta Biomater, 2017, 49: 1-15. |
[45] | Mayorcaguiliani AE, Madsen CD, Cox TR, et al. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix[J]. Nat Med, 2017, 23(7): 890-898. |
[46] | Skardal A, Atala A. Biomaterials for integration with 3-D bioprinting[J]. Ann Biomed Eng, 2015, 43(3): 730-746. |
[47] | Hashim SNM, Yusof MFH, Zahari W, et al. Angiogenic potential of extracellular matrix of human amniotic membrane[J]. Tissue Eng Regen Med, 2016, 13(3): 211-217. |
[48] | Akash MS, Rehman K. Recent progress in biomedical applications of pluronic (PF127): pharmaceutical perspectives[J]. J Control Release, 2015, 209: 120-138. |
[49] | Rukmani SJ, Lin P, Andrew JS, et al. Molecular modeling of complex cross-linked networks of PEGDA nanogels[J]. J Phys Chem B, 2019, 123(18): 4129-4138. |
[50] | Ozler SB, Bakirci E, Kucukgul C, et al. Three-dimensional direct cell bioprinting for tissue engineering[J]. J Biomed Mater Res Part B Appl Biomater, 2017, 105(8): 2530-2544. |
[51] | Miller JS, Shen CJ, Legant WR, et al. Bioactive hydrogels made from step-growth derived PEG-peptide macromers[J]. Biomaterials, 2010, 31(13): 3736-3743. |
[52] | Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink[J]. Biomaterials, 2016, 106: 58-68. |
[53] | Gao L, Kupfer ME, Jung JP, et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold[J]. Circ Res, 2017, 120(8): 1318-1325. |
[54] | Choi YJ, Jun YJ, Kim DY, et al. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss[J]. Biomaterials, 2019, 206: 160-169. |
[55] | Pateman CJ, Harding AJ, Glen A, et al. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair[J]. Biomaterials, 2015, 49: 77-89. |
[56] | Hu F, Zhang X, Liu H, et al. Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration[J]. Biochem Biophys Res Commun, 2017, 489(2): 171-178. |
[57] | Johnson BN, Lancaster KZ, Zhen G, et al. 3D printed anatomical nerve regeneration pathways[J]. Adv Funct Mater, 2015, 25(39): 6205-6217. |
[58] | Morille M, Toupet K, Montero-Menei CN, et al. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis[J]. Biomaterials, 2016, 88: 60-69. |
[59] | Zhang ZZ, Wang SJ, Zhang JY, et al. 3D-printed poly(ε-caprolactone) scaffold augmented with mesenchymal stem cells for total meniscal substitution[J]. Am J Sports Med, 2017, 45(7): 1479-1511. |
[60] | Shi X, Zhou J, Zhao Y, et al. Gradient-regulated hydrogel for interface tissue engineering: steering simultaneous osteo/chondrogenesis of stem cells on a chip[J]. Adv Healthc Mater, 2013, 2(6): 846-853. |
[1] | Jiang Jianhong, Duan Renpeng, Li Xiaofeng. Application of three-dimensional visualization technology in the anatomical variations of hilar bile ducts in Chinese population [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 1-4. |
[2] | Guo Hongzhi, Wang Yu, Zhang Jiaqi, Liang Haibin, Ma Ziwei, Feng Wei, Wu You, Si Ziyi. Evaluation of placental vascular structure in preeclampsia by vascular casting combined with CT three-dimensional model [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 5-10. |
[3] | Li Jiawei, Zhang Jing, Li Canran, Lan Wenjie, Ji Qingyu, Guo Zhiyong, Zhang Yunfeng, Liu Qi, Chen Qingwei, Li Xiaohe. X-ray measurement of proximal femur anatomical parameters in Mongolian population [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 11-16. |
[4] | . Digital measurement and clinical significance of occipitocervical Angle and posterior occipitocervical Angle in children and adolescents [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 17-20. |
[5] | Wang Xinghang, Ding Jiayuan, Li Fang, Bao Cuifen, Yan Lijing. Ginsenoside Rg1 reduces the inflammatory response of microglia after oxygen glucose deprivation/resupply by inhibiting the NLRP3 inflammasome pathway [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 33-41. |
[6] | Wu Yanfei, Ma Jianxiong, Lu Bin, Wang Ying, Bai Haohao, Jin Hongzhen, Ma Xinlong. Study on the correlation between the reconstruction of grayscale values using CT post-processing technology and the compressive strength of the endplate [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 71-76. |
[7] | Zhuang Wanqiang, Tang Yi, Luo Yonggang, Zhang Hui. An early and mid-term retrospective study of the effects of arthroscopy combined with high tibial osteotomy on patellar position and patellofemoral joint function [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 77-82. |
[8] | Luo Ying, Dou Weiyu, Wu Xiaohang, Chen Jingkun, Peng Changgui, Pan Jianying . Risk factors of postoperative complications of calcaneal fractures treated with hippocampal plate internal fixation through minimally invasive method [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 83-88. |
[9] | Chen Junchen, Cao Wenying, Luo Yanjun, He Wanyi, Zhu Zhenzhen, Peng Zhiqiang. Comparison of the efficacy of aspiration thrombectomy and thrombectomy with combined aspiration and stent retriever in the treatment of anterior circulation cerebral embolism [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 89-93. |
[10] | Hu Shuohong, Zheng Xuebin, Li Fujie, Wang Hong. Prospective clinical study on the effect of implant abutment materials on the soft and hard tissues around the implant [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 94-98. |
[11] | Lin Jie, Jin Yong, Pang Qingjiang. Research Progress of Relationship Between Gut Microbiome and Osteoporosis [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 109-111. |
[12] | Zhang Yue, Cai Xingbo, Zhang Bihuan, Wang Bin, Xu Yongqing. A review of biomechanical studies of wrist after total wrist arthroplasty [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 112-114. |
[13] | Chen Ren, Yang Shengbo. Research progress on the anatomy and clinical application of masseter muscle [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 115-117. |
[14] | Xu Haotong, Xu Wanyu, Wu Yi, He Mingjing, Lei Xiubing, Tian Fuzhou. Imaging study on classification of pseudocysts of splenic hilum in chronic pancreatitis and its relationship with sinistral portal hypertation [J]. Chinese Journal of Clinical Anatomy, 2023, 41(6): 652-656. |
[15] | Liu Zhan, Tao Shengzhong, Lu Huipeng, Wang Zaibin, Sui Yubo, Niu Guangming. The differences of neurovascular compression in patients with or without primary trigeminal neuralgia by three-dimensional observation [J]. Chinese Journal of Clinical Anatomy, 2023, 41(6): 667-674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|