[1] |
Chen JH, Asch SM. Machine learning and prediction in medicine-beyond the peak of inflated expectations[J]. N Engl J Med, 2017, 376(26): 2507-2509.
|
[2] |
涂仕奎, 杨杰, 连勇, 等. 关于智能医疗研究与发展的思考[J]. 科学, 2017, 3(69): 9-11.
|
[3] |
李金昌. 人工智能与统计学[J]. 中国统计, 2018(10): 16-18.
|
[4] |
刘泉宝, 刘永清. 从思维科学看人工智能的研究[J]. 计算机科学, 1994, 20(5): 9-12.
|
[5] |
Koch M. Artificial intelligence is becoming natural[J]. Cell, 2018, 173(3): 531-533.
|
[6] |
张逊. 现代医学事业发展的新理念-充分利用互联网、大数据、人工智能[J]. 中国肺癌杂志, 2018, 21(3): 141-142.
|
[7] |
Zaharchuk G, Gong E, Wintermark M, et al. Deep learning in neuroradiology[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1776-1784.
|
[8] |
李华秀, 李振辉, 王关顺. 影像组学在消化道系统的应用进展[J]. 中国临床医学影像杂志, 2017, 28(9): 672-674.
|
[9] |
Kumari D, Kumar R. Impact of biological big data in bioinformatics[J]. International Journal of Computer Applications, 2014, 101(11): 22-24.
|
[10] |
Gil Y, Greaves M, Hendler J, et al. Artificial intelligence. Amplify scientific discovery with artificial intelligence[J]. Science, 2014, 346 (6206): 171-172.
|
[11] |
Rampasek L, Goldenberg A. Learning from everyday images enables expert-like diagnosis of retinal diseases[J]. Cell, 2018, 172(5): 893-895.
|
[12] |
Kahn CE Jr. From images to actions: opportunities for artificial intelligence in radiology[J]. Radiology, 2017, 285(3): 719-720.
|
[13] |
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.
|
[14] |
Acharya UR, Hagiwara Y, Sudarshan VK, et al. Towards precision medicine: from quantitative imaging to radiomics[J]. J Zhejiang Univ Sci B, 2018, 19(1): 6-24.
|
[15] |
Komeda Y, Handa H, Watanabe T, et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: preliminary experience[J]. Oncology, 2017, 93(suppl 1): 30-34.
|
[16] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[17] |
陈诗慧, 刘维湘, 秦璟, 等. 基于深度学习和医学图像的癌症计算机辅助诊断研究进展[J]. 生物医学工程学杂志, 2017, 34(2): 314-319.
|
[18] |
Varuna Shree N, Kumar TNR. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network[J]. Brain Inform, 2018, 5(1): 23-30.
|
[19] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542 (7660): 686.
|
[20] |
Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists[J]. Ann Oncol, 2018, 29(8): 1836-1842.
|
[21] |
Marchetti MA, Codella NCF, Dusza SW, et al. Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images[J]. J Am Acad Dermatol, 2018, 78(2): 270-277.
|
[22] |
Javaid M, Javid M, Rehman MZ, et al. A novel approach to CAD system for the detection of lung nodules in CT images[J]. Comput Methods Programs Biomed, 2016, 135(1): 125-139.
|
[23] |
Masood A, Sheng B, Li P, et al. Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images[J]. J Biomed Inform, 2018, 79(1): 117-128.
|
[24] |
DeSantis C, Ma J, Bryan L, et al. Breast cancer statistics, 2013[J]. CA Cancer J Clin, 2014, 64(1): 52-62.
|
[25] |
Low SK, Zembutsu H, Nakamura Y. Breast cancer: the translation of big genomic data to cancer precision medicine[J]. Cancer Science, 2018, 109(3): 497-506.
|
[26] |
Zadeh Shirazi A, Seyyed Mahdavi Chabok SJ, Mohammadi Z. A novel and reliable computational intelligence system for breast cancer detection[J]. Med Biol Eng Comput, 2018, 56(5): 721-732.
|
[27] |
Ortiz-Rodriguez JM, Guerrero-Mendez C, Martinez-Blanco MDR, et al. Breast cancer detection by means of artificial neural networks[J]. Advanced Applications for Artificial Neural Networks. 2018, (1): 161-176.
|
[28] |
Gopal NN, Karnan M. Diagnose brain tumor through MRI using image processing clustering algorithms such as Fuzzy C Means along with intelligent optimization techniques[C]. IEEE, 2010.
|
[29] |
El-Dahshan ESA, Mohsen HM, Revett K, et al. Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm[J]. Expert Systems with Applications, 2014, 41(11): 5526-5545.
|
[30] |
Manogaran G, Varatharajan R, Priyan MK. Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system[J]. Multimedia Tools and Applications, 2018, 77(4): 4379-4399.
|
[31] |
Nazari S, Fallah M, Kazemipoor H, et al. A fuzzy inference-fuzzy analytic hierarchy process-based clinical decision support system for diagnosis of heart diseases[J]. Expert Systems with Applications, 2017, 95(1): 261-271.
|
[32] |
Wang LZ, Cheung CY, Tapp RJ, et al. Availability and variability in guidelines on diabetic retinopathy screening in Asian countries[J]. Br J Ophthalmol, 2017, 101(10): 1352-1360.
|
[33] |
Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.
|
[34] |
Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye, 2018, 32(6): 1138-1144.
|
[35] |
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
|