Chinese Journal of Clinical Anatomy ›› 2020, Vol. 38 ›› Issue (3): 363-366.doi: 10.13418/j.issn.1001-165x.2020.03.025
Previous Articles Next Articles
LIU Qi1,2, YANG Zhou1, ZHU Qing-an1
Received:
2019-09-04
Online:
2020-05-25
Published:
2020-06-02
CLC Number:
LIU Qi, YANG Zhou, ZHU Qing-an. Research progress of oxidative stress and disc degeneration[J]. Chinese Journal of Clinical Anatomy, 2020, 38(3): 363-366.
[1] | Pulickal T, Boos J, Konieczny M, et al. MRI identifies biochemical alterations of intervertebral discs in patients with low back pain and radiculopathy[J]. Eur Radiol, 2019, 29(12): 6443-6446. |
[2] | Vo NV, Hartman RA, Patil PR, et al. Molecular mechanisms of biological aging in intervertebral discs[J]. J Orthop Res, 2016, 34(8): 1289-1306. |
[3] | Kauppila T, Kauppila J, Larsson NG. Mammalian mitochondria and aging: an Update[J]. Cell Metab, 2017, 25(1): 57-71. |
[4] | Suzuki S, Fujita N, Hosogane N, et al. Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration[J]. Arthritis Res Ther, 2015, 17: 316. |
[5] | Dimozi A, Mavrogonatou E, Sklirou A, et al. Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells[J]. Eur Cell Mater, 2015, 30: 89-102, 103. |
[6] | Schröder K. NADPH oxidases in bone homeostasis and osteoporosis[J]. Free Radic Biol Med, 2019, 132: 67-72. |
[7] | Huang YC, Urban JP, Luk KD. Intervertebral disc regeneration: do nutrients lead the way[J]? Nat Rev Rheumatol, 2014, 10(9): 561-566. |
[8] | Huang YC, Leung VY, Lu WW, et al. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc[J]. Spine J, 2013, 13(3): 352-362. |
[9] | Lee DC, Adams CS, Albert TJ, et al. In situ oxygen utilization in the rat intervertebral disc[J]. J Anat, 2007, 210(3): 294-303. |
[10] | Gruber HE, Chow Y, Hoelscher GL, et al. Micromass culture of human anulus cells: morphology and extracellular matrix production[J]. Spine (Phila Pa 1976), 2010, 35(10): 1033-1038. |
[11] | Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis[J]. Cell, 2015, 163(3): 560-569. |
[12] | Park JB, Byun CH, Park EY. Rat Notochordal cells undergo premature stress-induced senescence by high glucose[J]. Asian Spine J, 2015, 9(4): 495-502. |
[13] | Nasto LA, Robinson AR, Ngo K, et al. Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration[J]. J Orthop Res, 2013, 31(7): 1150-1157. |
[14] | Gliemann L, Nyberg M, Hellsten Y. Nitric oxide and reactive oxygen species in limb vascular function: what is the effect of physical activity[J]? Free Radic Res, 2014, 48(1): 71-83. |
[15] | Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited[J]. Annu Rev Pathol, 2014, 9: 119-145. |
[16] | Sahoo S, Meijles DN, Pagano PJ. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases[J]? Clin Sci (Lond), 2016, 130(5): 317-335. |
[17] | Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015, 4: 180-183. |
[18] | Davalli P, Mitic T, Caporali A, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases[J]. Oxid Med Cell Longev, 2016, 2016: 3565127. |
[19] | Mavrogonatou E, Angelopoulou MT, Kletsas D. The catabolic effect of TNFalpha on bovine nucleus pulposus intervertebral disc cells and the restraining role of glucosamine sulfate in the TNFalpha-mediated up-regulation of MMP-3[J]. J Orthop Res, 2014, 32(12): 1701-1707. |
[20] | Chen JW, Ni BB, Li B, et al. The responses of autophagy and apoptosis to oxidative stress in nucleus pulposus cells: implications for disc degeneration[J]. Cell Physiol Biochem, 2014, 34(4): 1175-1189. |
[21] | Hou G, Lu H, Chen M, et al. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs[J]. Arch Gerontol Geriatr, 2014, 59(3): 665-669. |
[22] | Valko M, Jomova K, Rhodes CJ, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016, 90(1): 1-37. |
[23] | Peng B, Hou S, Shi Q, et al. The relationship between cartilage end-plate calcification and disc degeneration: an experimental study[J]. Chin Med J (Engl), 2001, 114(3): 308-312. |
[24] | Cai XY, Xia Y, Yang SH, et al. Ropivacaine- and bupivacaine-induced death of rabbit annulus fibrosus cells in vitro: involvement of the mitochondrial apoptotic pathway[J]. Osteoarthritis Cartilage, 2015, 23(10): 1763-1775. |
[25] | Chen JW, Ni BB, Zheng XF, et al. Hypoxia facilitates the survival of nucleus pulposus cells in serum deprivation by down-regulating excessive autophagy through restricting ROS generation[J]. Int J Biochem Cell Biol, 2015, 59:1-10. |
[26] | Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurol Res, 2017, 39(1): 73-82. |
[27] | Gruber HE, Watts JA, Riley FE, et al. Mitochondrial bioenergetics, mass, and morphology are altered in cells of the degenerating human annulus[J]. J Orthop Res, 2013, 31(8): 1270-1275. |
[28] | Park JS, Park JB, Park IJ, et al. Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress[J]. Int Orthop, 2014, 38(6): 1311-1320. |
[29] | Park EY, Park JB. High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells[J]. Int Orthop, 2013, 37(12): 2507-2514. |
[30] | Feng C, Yang M, Lan M, et al. ROS: crucial intermediators in the pathogenesis of intervertebral disc degeneration[J]. Oxid Med Cell Longev, 2017, 2017: 5601593. |
[31] | Alvarez-Garcia O, Matsuzaki T, Olmer M, et al. Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration[J]. J Orthop Res, 2017, 35(12): 2682-2691. |
[32] | Gruber HE, Watts JA, Hoelscher GL, et al. Mitochondrial gene expression in the human annulus: in vivo data from annulus cells and selectively harvested senescent annulus cells[J]. Spine J, 2011, 11(8): 782-791. |
[33] | Bakirezer SD, Yaltirik CK, Kaya AH, et al. The evaluation of glutathione reductase and malondialdehyde levels in patients with lumbar disc degeneration disease[J]. In Vivo, 2019, 33(3): 811-814. |
[34] | León Fernández OS, Pantoja M, Díaz Soto MT, et al. Ozone oxidative post-conditioning reduces oxidative protein damage in patients with disc hernia[J]. Neurol Res, 2012, 34(1): 59-67. |
[35] | Ding F, Shao ZW, Xiong LM. Cell death in intervertebral disc degeneration[J]. Apoptosis, 2013, 18(7): 777-785. |
[36] | Kepler CK, Ponnappan RK, Tannoury CA, et al. The molecular basis of intervertebral disc degeneration[J]. Spine J, 2013, 13(3): 318-330. |
[37] | Yang L, Rong Z, Zeng M, et al. Pyrroloquinoline quinone protects nucleus pulposus cells from hydrogen peroxide-induced apoptosis by inhibiting the mitochondria-mediated pathway[J]. Eur Spine J, 2015, 24(8): 1702-1710. |
[38] | Zhang F, Zhao X, Shen H, et al. Molecular mechanisms of cell death in intervertebral disc degeneration (Review)[J]. Int J Mol Med, 2016, 37(6): 1439-1448. |
[39] | Zhang SJ, Yang W, Wang C, et al. Autophagy: a double-edged sword in intervertebral disk degeneration[J]. Clin Chim Acta, 2016, 457: 27-35. |
[40] | Feng C, Liu H, Yang M, et al. Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways[J]. Cell Cycle, 2016, 15(13): 1674-1684. |
[41] | Wang F, Cai F, Shi R, et al. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2016, 24(3): 398-408. |
[42] | Krupkova O, Handa J, Hlavna M, et al. The natural polyphenol epigallocatechin gallate protects intervertebral disc cells from oxidative stress[J]. Oxid Med Cell Longev, 2016, 2016: 7031397. |
[43] | Zhou N, Lin X, Dong W, et al. SIRT1 alleviates senescence of degenerative human intervertebral disc cartilage endo-plate cells via the p53/p21 pathway[J]. Sci Rep, 2016, 6: 22628. |
[44] | Krishnamoorthy D, Hoy RC, Natelson DM, et al. Dietary advanced glycation end-product consumption leads to mechanical stiffening of murine intervertebral discs[J]. Dis Model Mech, 2018, 11(12): dmm036012. |
[45] | Yang D, Wang D, Shimer A, et al. Glutathione protects human nucleus pulposus cells from cell apoptosis and inhibition of matrix synthesis[J]. Connect Tissue Res, 2014, 55(2): 132-139. |
[46] | Scharf B, Clement CC, Yodmuang S, et al. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification[J]. Chem Biol, 2013, 20(7): 922-934. |
[47] | Cannizzo ES, Clement CC, Morozova K, et al. Age-related oxidative stress compromises endosomal proteostasis[J]. Cell Rep, 2012, 2(1): 136-149. |
[48] | Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content[J]. Nat Rev Rheumatol, 2014, 10(1): 44-56. |
[49] | Zheng G, Pan Z, Zhan Y, et al. TFEB protects nucleus pulposus cells against apoptosis and senescence via restoring autophagic flux[J]. Osteoarthritis Cartilage, 2019, 27(2): 347-357. |
[50] | Chen Y, Wu Y, Shi H, et al. Melatonin ameliorates intervertebral disc degeneration via the potential mechanisms of mitophagy induction and apoptosis inhibition[J]. J Cell Mol Med, 2019, 23(3): 2136-2148. |
[51] | Yao M, Zhang J, Li Z, et al. Marein protects human nucleus pulposus cells against high glucose-induced injury and extracellular matrix degradation at least partly by inhibition of ROS/NF-kappaB pathway[J]. Int Immunopharmacol, 2020, 80: 106126. |
[52] | Song Y, Wang Z, Liu L, et al. 1, 4-Dihydropyridine (DHP) suppresses against oxidative stress in nucleus pulposus via activating sirtuin-1[J]. Biomed Pharmacother, 2020, 121: 109592. |
[53] | Guo MB, Wang DC, Liu HF, et al. Lupeol against high-glucose-induced apoptosis via enhancing the anti-oxidative stress in rabbit nucleus pulposus cells[J]. Eur Spine J, 2018, 27(10): 2609-2620. |
[1] | Lin Yuqian, Zhao Wei, Wang Jianlin, Wang Yujuan, Yu Qinglin, Rao Libing, Li Li. Application of the individualized "Three-set" guide in discectomy [J]. Chinese Journal of Clinical Anatomy, 2023, 41(5): 599-602. |
[2] | Gu Honglin, Chang Yunbing. Research progress of local bone autograft in anterior cervical decompression and fusion [J]. Chinese Journal of Clinical Anatomy, 2021, 39(5): 621-623. |
[3] | LIANG Chang-xiang, ZHENG Xiao-qing, XIAO Dan, HUANG Yong-xiong, LIANG Guo-yan, CHEN Chong, YIN Dong, CHANG Yun-bing. Surgical essentials and early clinical effects of biportal endoscopic lumbar intervertebral fusion in the treatment of degenerative lumbar disease [J]. Chinese Journal of Clinical Anatomy, 2020, 38(6): 703-708. |
[4] | XUE Hou-jun, PAN Lei, HUANG Jie-bin, LEI Yu, WANG Shi-cheng, CHEN Wei-xiong. Comparison of the clinical application of percutaneous endoscopic TESSY and BESI technology in L5~S1 disc herniation [J]. Chinese Journal of Clinical Anatomy, 2020, 38(6): 709-714. |
[5] | YAN Hui-bo, JIN Da-di, LI Qing-chu, QIU Yi-yan, WU Yi, YANG Chang-sheng . The efficacy and safety of the surgical treatment of recurrent lumbar disc herniation with anterior lumbar interbody fusion [J]. Chinese Journal of Clinical Anatomy, 2020, 38(5): 600-604. |
[6] | WANG Shi-cheng, PAN Lei, XUE Hou-jun, LEI Yu. Complications analysis of percutaneous endoscopic interlaminar discectomy in the treatment of lumbar disc herniation [J]. Chinese Journal of Clinical Anatomy, 2020, 38(5): 605-608. |
[7] | SU Bao-ke, WANG Wei, ZHANG Yun-feng, LI Zhi-jun, XU Yang-yang, WANG Hai-yan, LI Xiao-he. The research progress of endoscopic treatment of adolescent lumbar disc herniation [J]. Chinese Journal of Clinical Anatomy, 2019, 37(4): 469-470. |
[8] | JIANG Huan-Chang, WANG Ji-Xin, CHANG Beng. Analysis on the rotatable stability of slipping prophase lumbar spondylolysis when motion of flexion and extension [J]. Chinese Journal Of Clinical Anatomy, 2015, 33(1): 105-107. |
[9] | CENG Zhong-You, YAN Wei-Feng, TANG Hong-Chao, TUN Feng, ZHANG Jian-Jiao, JIN Cai-Yi. Surgery strategy of isthmic lumbar spondylolisthesis of grade Ⅱ or above [J]. Chinese Journal Of Clinical Anatomy, 2013, 31(5): 591-595. |
[10] | LIU Xian-Hong, OU Yun-Sheng, JIANG Dian-Meng, QUAN Zheng-Hua, ZHANG Le, CHEN Xin, HU Zhen-Meng. Initial curative effect comparision of ano-hydroxyapatite polyamide-66 cage and polyetheretherketone cage on anterior cervical intervertebral disc discectomy and fusion [J]. Chinese Journal Of Clinical Anatomy, 2012, 30(6): 687-692. |
[11] | CHEN Jian, LONG Hou-Qing, LIU Shao-Yu, XIE Gan-Hu, LI Gao-Miao, WEI Fu-Xin, HUANG Yang-Liang, LI Bi-Bao. Clinical significance and surgical treatment of lumbar disc herniation associated with separation of the ring apophysis in adolescents [J]. Chinese Journal Of Clinical Anatomy, 2010, 28(1): 90-. |
[12] | CHEN Ai-Dong, XU Rui-Sheng, TUN Ji-Dan, WANG Xue-Song, XUE Jun, BAO Ju-Liang. The changes of intervertebral contact area during lumbar spondylolisthesis [J]. Chinese Journal Of Clinical Anatomy, 2010, 28(1): 94-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|