[1] |
Groll M, Berkers CR, Ploegh HL, et al. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome[J]. Structure, 2006, 14(3): 451-456.
|
[2] |
Trippier PC, McGuigan C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications[J]. Med Chem Comm, 2010, 1(3): 183-189.
|
[3] |
Schrader J, Henneberg F, Mata RA, et al. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design[J]. Science, 2016, 353(6299): 594-598.
|
[4] |
Rosenberg PS, Best A, Anderson WF, et al. Multiple myeloma will become a common cancer in the era of modern therapy[J]. Cancer Res, 2016, 76(14): 5231.
|
[5] |
Barlogie B, Mitchell A, van RF, et al. Curing myeloma at last: defining criteria and providing the evidence[J]. Blood, 2014, 124(20): 3043-3051.
|
[6] |
Gandolfi S, Laubach JP, Hideshima T, et al. The proteasome and proteasome inhibitors in multiple myeloma[J]. Cancer Metastasis Rev, 2017, 36(4): 561-584.
|
[7] |
Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy[J]. Nat Rev Clin Oncol, 2017, 14(7): 417-433.
|
[8] |
Arastu KS, Anderl JL, Kraus M, et al. Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events[J]. Clin Cancer Res, 2011, 17(9): 2734-2743.
|
[9] |
Oerlemans R, Franke NE, Assaraf YG, et al. Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein[J]. Blood, 2008, 112(6): 2489-2499.
|
[10] |
Vanderloo JP, Pomplun ML, Vermeulen LC, et al. Stability of unused reconstituted bortezomib in original manufacturer vials[J]. J Oncol Pharm Pract, 2011, 17(4): 400-402.
|
[11] |
Shen J, Song G, An M, et al. The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy[J]. Biomaterials, 2014, 35(1): 316-326.
|
[12] |
Swami A, Reagan MR, Basto P, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting[J]. Proc Natl Acad Sci USA, 2014, 111(28): 10287-10292.
|
[13] |
Zuccari G, Milelli A, Pastorino F, et al. Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic[J]. J Control Release, 2015, 211(10): 44-52.
|
[14] |
Shen S, Du XJ, Liu J, et al. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy[J]. J Control Release, 2015, 208(28): 14-24.
|
[15] |
Wu K, Cheng R, Zhang J, et al. Micellar nanoformulation of lipophilized bortezomib: high drug loading, improved tolerability and targeted treatment of triple negative breast cancer[J]. J Mater Chem B, 2017, 5(28): 5658-5667.
|
[16] |
Gu ZX, Wang XX, Cheng R, et al. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma[J]. Acta Biomater, 2018, 80(10): 288-295.
|
[17] |
Frasco MF, Almeida GM, Santos-Silva F, et al. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells[J]. J Biomed Mater Res Part A, 2015, 103(4): 1476-1484.
|
[18] |
Ashley JD, Stefanick JF, Schroeder VA, et al. Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo[J]. J Med Chem, 2014, 57(12): 5282-5292.
|
[19] |
Canepa P, Chiatti F, Corno M, et al. Affinity of hydroxyapatite (001) and (010) surfaces to formic and alendronic acids: a quantum-mechanical and infrared study[J]. Phys Chem Chem Phys, 2011, 13(3): 1099-1111.
|
[20] |
Bosco R, Iafisco M, Tampieri A, et al. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity[J]. Appl Surf Sci, 2015, 328(15): 516-524.
|
[21] |
Thamake SI, Raut SL, Gryczynski Z, et al. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer[J]. Biomaterials, 2012, 33(29): 7164-7173.
|
[22] |
Hu QY, Qian CG, Sun WJ, et al. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus[J]. Adv Mater, 2016, 28(43): 9573-9580.
|