Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (3): 369-372.doi: 10.13418/j.issn.1001-165x.2021.03.024
Previous Articles Next Articles
Ma Chuhan1, Yu Yanan2, Lui Qiwen1, Che Huasong1, Zhao Jiamei1, Hu Qiuxia1, Cheng Jiamao2
Received:
2020-01-02
Online:
2021-05-25
Published:
2021-06-02
CLC Number:
Ma Chuhan, Yu Yanan, Lui Qiwen, Che Huasong, Zhao Jiamei, Hu Qiuxia, Cheng Jiamao. Effect of miRNA on the TGF-β/smad signal pathway in hepatic fibrosis[J]. Chinese Journal of Clinical Anatomy, 2021, 39(3): 369-372.
[1] | Ge D, Chen H, Zheng S, et al. Hsa-miR-889-3p promotes the proliferation of osteosarcoma through inhibiting myeloid cell nuclear differentiation antigen expression[J]. Biomed Pharmacother, 2019, 114: 108819. DOI: 10.1016/j.biopha.2019.108819. |
[2] | Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. DOI: 10.1016/j.cbi.2018.07.008. |
[3] | Xu FY, Liu CW, Zhou DD, et al. TGF-β/SMAD pathways and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167. DOI: 10.1369/0022155415627681. |
[4] | Wang Y, Shen RW, Han B, et al. Notch signaling mediated by TGF-β/Smad pathway in concanavalin A-induced liver fibrosis in rats[J]. World J Gastroenterol, 2017, 23(13): 2330-2336. DOI: 10.3748/wjg.v23.i13.2330. |
[5] | Ran LJ, Liang J, Deng X. MicroRNAs regulate hepatic fibrosis via TGF-β/Smad pathway[J]. World Chinese Journal of Digestology, 2017, 25(2): 166. DOI: 10.11569/wcjd.v25.i2.166. |
[6] | Du GF, Wang J, Zhang T, et al. Targeting Src family kinase member Fyn by Saracatinib attenuated liver fibrosis in vitro and in vivo[J]. Cell Death Dis, 2020, 11(2): 118. DOI: 10.1038/s41419-020-2229-2. |
[7] | Genz B, Coleman MA, Irvine KM, et al. Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells[J]. Sci Rep, 2019, 9(1): 8541. DOI: 10.1038/s41598-019-44865-1. |
[8] | J Hyun, Y Jung. MicroRNAs in liver fibrosis: focusing on the interaction with hedgehog signaling[J]. World J Gastroenterol, 2016, 22 (29): 6652-6662. DOI: 10.3748/wjg.v22.i29.6652. |
[9] | Wang L, Wu HL, Wu XF, et al. Mechanism of anti hepatic fibrosis of traditional chinese medicine[J]. Clinical Journal of Traditional Chinese Medicine, 2019, 31(5): 818-821. DOI: 10.16448/j.cjtcm.2019.0240. |
[10] | 付玲珠, 郑婷, 张永生. TGF-β/Smad信号转导通路与肝纤维化研究进展[J]. 中国临床药理学与治疗学, 2014, 19(10): 1189-1195. |
[11] | Wang TX, Li Y, Chen J, et al. TGF-β1/Smad3 signaling promotes collagen synthesis in pulmonary artery smooth muscle by down-regulating miR-29b[J]. Int J Clin Exp Pathol, 2018, 11(12): 5592-5601. PMID: 31949646. |
[12] | 田甜, 马国珍, 廖志峰, 等. TGF-β1、PDGF、CTGF 与肝纤维化发病机制的相关性研究进展[J]. 甘肃医药, 2014, 33(10): 740-742. DOI: 10.15975/j.cnki.gsyy.2014.10.044. |
[13] | Tu XL, Zhang HY, Zhang JC, et al. MicroRNA-101 suppresses liver fibrosis by targeting the TGF-β signalling pathway[J]. J Pathol, 2014, 234(1): 46-59. DOI: 10.1002/path.4373. |
[14] | 于洋, 史嘉翊, 黄珍, 等. 肝纤维化中TGF-β/Smad信号通路研究进展[J]. 牡丹江医学院学报, 2019, 40(5): 121-123, 174. DOI: 10.13799/j.cnki.mdjyxyxb.2019.05.038. |
[15] | Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling[J]. Sci Signal, 2019, 12(570): eaav5183. DOI: 10.1126/scisignal.aav5183. |
[16] | Kavitha N, Vijayarathna S, Jothy SL, et al. MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis[J]. Asian Pac J Cancer Prev, 2014, 15(18): 7489-7497. DOI: 10.7314/apjcp.2014.15.18.7489. |
[17] | Miyoshi K, Okada TN, Siomi H, et al. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway[J]. RNA, 2009, 15(7): 1282-1291. DOI: 10.1261/rna.1541209. |
[18] | Ying SY, Chang DC, Lin SL. The MicroRNA[J]. Methods Mol Biol, 2018, 1733: 1-25. DOI: 10.1007/978-1-4939-7601-0_1. |
[19] | Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9): 597-610. DOI: 10.1038/nrg2843. |
[20] | 孙海婷. microRNA作用靶基因的预测[J]. 科技创新与应用, 2013, (23): 57-58. CNKI: SUN:CXYY.0.2013-23-045. |
[21] | 曾佛来, 施梅姐, 萧焕明, 等. 微小RNAs参与调控肝纤维化转化生长因子β/Smad信号通路的研究进展[J]. 广西医学, 2019, 41(15): 1962-1964, 1968. DOI: 10.11675/j.issn.0253-4304.2019.15.22. |
[22] | Lakner AM, Steuerwald NM, Walling TL, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis[J]. Hepatology, 2012, 56(1): 300-310. DOI: 10.1002/hep.25613. |
[23] | Zhang Y, Huang XR, Wei LH, et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling[J]. Mol Ther, 2014, 22(5): 974-985. DOI: 10.1038/mt.2014.25. |
[24] | Huang CF, Sun CC, Zhao F, et al. miR-33a levels in hepatic and serum after chronic HBV-induced fibrosis[J]. J Gastroenterol, 2015, 50(4): 480-490. DOI: 10.1007/s00535-014-0986-3. |
[25] | Sun X, He Y, Ma TT, et al. Participation of miR-200a in TGF-β1-mediated hepatic stellate cell activation[J]. Mol Cell Biochem, 2014, 388(1-2): 11-23. DOI: 10.1007/s11010-013-1895-0. |
[26] | He Y, Huang C, Sun X, et al. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4[J]. Cell Signal, 2012, 24(10): 1923-1930. DOI: 10.1016/j.cellsig.2012.06.003. |
[27] | Yu FJ, Guo Y, Chen BC, et al. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7[J]. Lab Invest, 2015, 95(7): 781-789. DOI: 10.1038/labinvest.2015.58. |
[28] | Wang CQ, Xu C, Fu XL, et al. Schisandrin B suppresses liver fibrosis in rats by targeting miR-101-5p through the TGF-β signaling pathway[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 473-478. DOI: 10.1080/21691401.2020.1717507. |
[29] | Wang J, Chu ESH, Chen HY, et al. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway[J]. Oncotarget, 2015, 6(9): 7325-7338. DOI: 10.18632/oncotarget.2621. |
[30] | Liang CL, Bu SR, Fan XM. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3[J]. Cell Biochem Func, 2016, 34(5): 326-333. DOI: 10.1002/cbf.3193. |
[31] | Roy S, Benz F, Cardenas DV, et al. miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis[J]. J Dig Dis, 2015, 16(9): 513-524. DOI: 10.1111/1751-2980.12266. |
[32] | Tu XL, Zheng XX, Li HN, et al. MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells[J]. Toxicol Sci, 2015, 146(1): 157-169. DOI: 10.1093/toxsci/kfv081. |
[33] | Noetel A, Kwiecinski M, Elfimova N, et al. microRNA are central players in anti- and profibrotic gene regulation during liver fibrosis[J]. Front Physiol, 2012, 3: 49. DOI: 10.3389/fphys.2012.00049. |
[34] | Tu XL, Zhang YY, Zheng XX, et al. TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice[J]. Sci Rep, 2017, 7(1): 2957. DOI: 10.1038/s41598-017-03175-0. |
[35] | Huang Q, Zhang X, Bai F, et al. Methyl helicterte ameliorates liver fibrosis by regulating miR-21-mediated ERK and TGF-β1/Smads pathways[J]. Int Immunopharmacol, 2019, 66: 41-51. DOI: 10.1016/j.intimp.2018.11.006. |
[36] | Lai SC, Iwakiri Y. Is miR-21 a potent target for liver fibrosis[J]? Hepatology, 2018, 67(6): 2082-2084. DOI: 10.1002/hep.29774. |
[37] | Zhu DD, He X, Duan YN, et al. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum[J]. Parasit Vectors, 2014, 7: 148. DOI: 10.1186/1756-3305-7-148. |
[38] | Csak T, Bala S, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis[J]. PLoS One, 2015, 10(6): e0129251. DOI: 10.1371/journal.pone.0129251. |
[39] | Lu L, Wang JL, Lu HW, et al. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: a rat fibrosis model study[J]. Biochem Biophys Res Commun, 2015, 465(3): 387-393. DOI: 10.1016/j.bbrc.2015.08.012. |
[40] | Okada H, Honda M, Campbell JS, et al. Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice[J]. Cancer Sci, 2015, 106(9): 1143-1152. DOI: 10.1111/cas.12730. |
[41] | Matsuura K, De Giorgi V, Schechterly C, et al. Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic hepatitis C[J]. Hepatology, 2016, 64(3): 732-745. DOI: 10.1002/hep.28660. |
[42] | Hu JF, Chen C, Liu QD, et al. The role of the miR-31/FIH1 pathway in TGF-β-induced liver fibrosis[J]. Clin Sci (Lond), 2015, 129(4): 305-317. DOI: 10.1042/CS20140012. |
[43] | Roderburg C, Luedde M, Vargas Cardenas D, et al. miR-133a mediates TGF-β-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis[J]. J Hepatol, 2013, 58(4): 736-742. DOI: 10.1016/j.jhep.2012.11.022. |
[44] | Yang YZ, Zhao XJ, Xu HJ, et al. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling[J]. Acta Pharmacol Sin, 2019, 40(7): 879-894. DOI: 10.1038/s41401-018-0194-4. |
[1] | Jiang Jianhong, Duan Renpeng, Li Xiaofeng. Application of three-dimensional visualization technology in the anatomical variations of hilar bile ducts in Chinese population [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 1-4. |
[2] | Guo Hongzhi, Wang Yu, Zhang Jiaqi, Liang Haibin, Ma Ziwei, Feng Wei, Wu You, Si Ziyi. Evaluation of placental vascular structure in preeclampsia by vascular casting combined with CT three-dimensional model [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 5-10. |
[3] | Li Jiawei, Zhang Jing, Li Canran, Lan Wenjie, Ji Qingyu, Guo Zhiyong, Zhang Yunfeng, Liu Qi, Chen Qingwei, Li Xiaohe. X-ray measurement of proximal femur anatomical parameters in Mongolian population [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 11-16. |
[4] | . Digital measurement and clinical significance of occipitocervical Angle and posterior occipitocervical Angle in children and adolescents [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 17-20. |
[5] | Li Wen, Yang Siyi, Huang Lei, Qing Jiwen, Jiang Songtao, Zhang Lei. Morphological characteristics and clinical significance of Lisfranc ligament based on MRI [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 21-25. |
[6] | Li Fanfan, Xu Yang, Wang Xiaoxu. Therapeutic effect of shikonin on the treatment of granuloma lobular mastitis in model rats by regulating Nrf2/HO-1 signaling pathway [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 26-32. |
[7] | Wang Xinghang, Ding Jiayuan, Li Fang, Bao Cuifen, Yan Lijing. Ginsenoside Rg1 reduces the inflammatory response of microglia after oxygen glucose deprivation/resupply by inhibiting the NLRP3 inflammasome pathway [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 33-41. |
[8] | Cheng Yingying, Wu Jianjun, Cai Haiyan , Jiao Xunwen, Ma Jiangbo, Ding Yinxiu. Activation and functional changes of astrocytes cultured in vitro under inflammatory stimulation [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 42-46. |
[9] | Qi Zhi, Yang Li, Jia Qiuye, Chen Haolun, Duan Zhaoda, Wu Chunyun. Edaravone regulates Sirt3 expression in lipopolysaccharide-activated microglia via MAPKs signaling pathway [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 47-53. |
[10] | Zhang Jingjing, Wang Hongxin. Protective effect of Baicalin on rats with pulmonary hypertension through PDGF/P38 MAPK signaling pathway [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 54-58. |
[11] | Yue Qin, Chen Rongli, Xiong Jingxi, Wang Tingyi, Cai Zhiheng, Yi Qiushi, Zeng Xinyi. Effect of Bletilla striata polysaccharides on the choke-area of cross-boundary flap in rats [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 59-64. |
[12] | Li Xiaoyu , Zhang Lei , Fu Lei , Li Dongbo , Wang Guoyou. Finite element study on the treatment of Sanders type II calcaneal fracture with three-step reduction method [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 65-70. |
[13] | Wu Yanfei, Ma Jianxiong, Lu Bin, Wang Ying, Bai Haohao, Jin Hongzhen, Ma Xinlong. Study on the correlation between the reconstruction of grayscale values using CT post-processing technology and the compressive strength of the endplate [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 71-76. |
[14] | Zhuang Wanqiang, Tang Yi, Luo Yonggang, Zhang Hui. An early and mid-term retrospective study of the effects of arthroscopy combined with high tibial osteotomy on patellar position and patellofemoral joint function [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 77-82. |
[15] | Luo Ying, Dou Weiyu, Wu Xiaohang, Chen Jingkun, Peng Changgui, Pan Jianying . Risk factors of postoperative complications of calcaneal fractures treated with hippocampal plate internal fixation through minimally invasive method [J]. Chinese Journal of Clinical Anatomy, 2024, 42(1): 83-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|