Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (5): 621-623.doi: 10.13418/j.issn.1001-165x.2021.05.023
Previous Articles Next Articles
Gu Honglin, Chang Yunbing
Received:
2020-05-19
Online:
2021-09-25
Published:
2021-09-30
CLC Number:
Gu Honglin, Chang Yunbing. Research progress of local bone autograft in anterior cervical decompression and fusion[J]. Chinese Journal of Clinical Anatomy, 2021, 39(5): 621-623.
[1] | Oglesby M, Fineberg SJ, Patel AA, et al. Epidemiological trends in cervical spine surgery for degenerative diseases between 2002 and 2009[J]. Spine (Phila Pa 1976), 2013, 38(14): 1226-1232. DOI: 10.1097/BRS.0b013e31828be75d. |
[2] | Jacobs W, Willems PC, Kruyt M, et al. Systematic review of anterior interbody fusion techniques for single- and double-level cervical degenerative disc disease[J]. Spine (Phila Pa 1976), 2011, 36(14): E950-E960. DOI: 10.1097/BRS.0b013e31821cbba5. |
[3] | Lad SP, Nathan JK, Boakye M. Trends in the use of bone morphogenetic protein as a substitute to autologous iliac crest bone grafting for spinal fusion procedures in the United States[J]. Spine (Phila Pa 1976), 2011, 36(4): E274-E281. DOI: 10.1097/BRS.0b013e3182055a6b. |
[4] | Skeppholm M, Olerud C. Pain from donor site after anterior cervical fusion with bone graft: a prospective randomized study with 12 months of follow-up[J]. Eur Spine J, 2013, 22(1): 142-147. DOI: 10.1007/s00586-012-2456-z. |
[5] | Yoon ST, Konopka JA, Wang JC, et al. ACDF graft selection by surgeons: survey of AOSpine members[J]. Global Spine J, 2017, 7(5): 410-416. DOI: 10.1177/2192568217699200. |
[6] | Stark JR, Hsieh J, Waller D. Bone graft substitutes in single- or double-level anterior cervical discectomy and fusion: a systematic review[J]. Spine (Phila Pa 1976), 2019, 44(10): E618-E628. DOI: 10.1097/BRS.0000000000002925. |
[7] | Mcguire RA, John KSt. Comparison of anterior cervical fusions using autogenous bone graft obtained from the cervical vertebrae to the modified Smith-Robinson technique[J]. J Spinal Disord, 1994, 7(6): 499-503. PMID: 7873847. |
[8] | Isu T, Kamada K, Kobayashi N, et al. The surgical technique of anterior cervical fusion using bone grafts obtained from cervical vertebral bodies[J]. J Neurosurg, 1994, 80(1): 16-19. DOI: 10.3171/jns.1994.80.1.0016. |
[9] | Patel VV, Estes SM, Naar EM, et al. Histologic evaluation of high speed burr shavings collected during spinal decompression surgery[J]. Orthopedics, 2009, 32(1): 23. DOI: 10.3928/01477447-20090101-17. |
[10] | Ichiyanagi T, Anabuki K, Nishijima Y, et al. Isolation of mesenchymal stem cells from bone marrow wastes of spinal fusion procedure (TLIF) for low back pain patients and preparation of bone dusts for transplantable autologous bone graft with a serum glue[J]. Biosci Trends, 2010, 4(3): 110-118. PMID: 20592461 |
[11] | Rustagi T, Alonso F, Drazin D, et al. Autologous bone harvest in anterior cervical spine surgery: a quantitative and qualitative in vitro analysis of cadaveric tissue[J]. World Neurosurg, 2018, 112: e134-e139. DOI: 10.1016/j.wneu.2017.12.175. |
[12] | Eder C, Chavanne A, Meissner J, et al. Autografts for spinal fusion: osteogenic potential of laminectomy bone chips and bone shavings collected via high speed drill[J]. Eur Spine J, 2011, 20(11): 1791-1795. DOI: 10.1007/s00586-011-1736-3. |
[13] | Ye S, Seo KB, Park BH, et al. Comparison of the osteogenic potential of bone dust and iliac bone chip[J]. Spine J, 2013, 13(11): 1659-1666. DOI: 10.1016/j.spinee.2013.06.012. |
[14] | Hassanein AH, Arany PR, Couto RA, et al. Cranial particulate bone graft ossifies calvarial defects by osteogenesis[J]. Plast Reconstr Surg, 2012, 129(5): 796e-802e. DOI: 10.1097/PRS.0b013e31824a2bdd. |
[15] | Fukuta K, Har-Shai Y, Collares MV, et al. Comparison of inorganic bovine bone mineral particles with porous hydroxyapatite granules and cranial bone dust in the reconstruction of full-thickness skull defect[J]. J Craniofac Surg, 1992, 3(1): 25-29. DOI: 10.1097/00001665-199207000-00010. |
[16] | Clune JE, Mulliken JB, Glowacki J, et al. Inlay cranioplasty: an experimental comparison of particulate graft versus bone dust[J]. Plast Reconstr Surg, 2010, 126(4): 1311-1319. DOI: 10.1097/PRS. 0b013e 3181ea4524. |
[17] | Ye S, Seo KB, Park BH, et al. Comparison of the osteogenic potential of bone dust and iliac bone chip[J]. Spine J, 2013, 13(11): 1659-1666. DOI: 10.1016/j.spinee.2013.06.012. |
[18] | Karamese M, Toksoz MR, Selimoglu MN, et al. Comparison of bone dust with other types of bone grafts for cranioplasty[J]. J Craniofac Surg, 2014, 25(4): 1155-1158. DOI: 10.1097/SCS.0000000000000765. |
[19] | Betz RR, Lavelle WF, Samdani AF. Bone grafting options in children[J]. Spine (Phila Pa 1976), 2010, 35(17): 1648-1654. DOI: 10.1097/BRS.0b013e3181ce8f4b. |
[20] | Salame K, Ouaknine GER, Razon N, et al. The use of carbon fiber cages in anterior cervical interbody fusion: report of 100 cases[J]. Neurosurg Focus, 2002, 12(1): E1. DOI: 10.3171/foc.2002.12.1.2. |
[21] | Pitzen T, Kiefer R, München D, et al. Filling a cervical spine cage with local autograft: change of bone density and assessment of bony fusion[J]. Zentralbl Neurochir, 2006, 67(1): 8-13. DOI: 10.1055/s-2006-921404. |
[22] | Ba ZY, Zhao WD, Wu DS, et al. Box cages packed with local decompression bone were efficient in anterior cervical discectomy and fusion: five- to 10-year follow-up[J]. Spine (Phila Pa 1976), 2012, 37(20): E1260-E1263. DOI: 10.1097/BRS.0b013e318265df75. |
[23] | Dang L, Sun Y, Wang SB, et al. A new source of autograft bone for interbody fusion in anterior cervical discectomy and fusion surgery: experience in 893 cases[J]. Br J Neurosurg, 2017, 31(1): 33-38. DOI: 10.1080/02688697.2016.1208805. |
[24] | Park JI, Cho DC, Kim KT, et al. Anterior cervical discectomy and fusion using a stand-alone polyetheretherketone cage packed with local autobone:assessment of bone fusion and subsidence[J]. J Korean Neurosurg Soc, 2013, 54(3): 189-193. DOI: 10.3340/jkns. 2013. 54. 3.189. |
[25] | Liu JM, Xiong X, Peng AF, et al. A comparison of local bone graft with PEEK cage versus iliac bone graft used in anterior cervical discectomy and fusion[J]. Clin Neurol Neurosurg, 2017, 155: 30-35. DOI: 10.1016/j.clineuro.2017.02.009. |
[26] | Ekanayake J, Shad A. Use of the novel ANSPACH bone collector for bone autograft in anterior cervical discectomy and cage fusion[J]. Acta Neurochir (Wien), 2010, 152(4): 651-653. DOI: 10.1007/s00701-009-0513-0. |
[27] | Shad A, Leach JCD, Teddy PJ, et al. Use of the Solis cage and local autologous bone graft for anterior cervical discectomy and fusion: early technical experience[J]. J Neurosurg Spine, 2005, 2(2): 116-122. DOI: 10.3171/spi.2005.2.2.0116. |
[28] | Park S, Lee DH, Hwang S, et al. Feasibility of local bone dust as a graft material in anterior cervical discectomy and fusion[J]. J Neurosurg Spine, 2019, 16(3): 1-6. DOI: 10.3171/2019.3.SPINE181416. |
[29] | Salamanna F, Tschon M, Borsari V, et al. Spinal fusion procedures in the adult and young population: a systematic review on allogenic bone and synthetic grafts when compared to autologous bone[J]. J Mater Sci Mater Med, 2020, 31(6): 51. DOI: 10.1007/s10856-020-06389-3. |
[30] | Ross DA, Pollock JM, Li NP, et al. Anterior cervical arthrodesis with polyetheretherketone spacers: what is the role of the grafting material[J]? Clin Spine Surg, 2020, 33(10): E539-E544. DOI: 10.1097/BSD.0000000000000995. |
[31] | Moo IH, Kam CJW, Lai MWS, et al. A comparison of contiguous two-level anterior cervical discectomy and fusion using a structural allograft versus a Polyetheretherketone (PEEK) cage: the results of a three-year follow-up[J]. BMC Musculoskelet Disord, 2020, 21(1): 331. DOI: 10.1186/s12891-020-03325-y. |
[32] | Arnold PM, Sasso RC, Janssen ME, et al. i-FactorTM bone graft vs autograft in anterior cervical discectomy and fusion: 2-Year follow-up of the randomized single-blinded food and drug administration investigational device exemption study[J]. Neurosurgery, 2018, 83(3): 377-384. DOI: 10.1093/neuros/nyx432. |
[33] | Liu XW, Wu ZF, Liu G, et al. Partial vertebrae resection laterally to harvest supplemental autograft bone for anterior cervical discectomy and fusion: a technical note and outcomes[J]. World Neurosurg, 2019, 121: 44-50. DOI: 10.1016/j.wneu.2018.09.141. |
[34] | Min WK, Bae JS, Park BC, et al. Proliferation and osteoblastic differentiation of bone marrow stem cells: comparison of vertebral body and iliac crest[J]. Eur Spine J, 2010, 19(10): 1753-1760. DOI: 10.1007/s00586-010-1424-8. |
[35] | Pitzen T, Tan JS, Dvorak MF, et al. Local autograft retrieval from a cervical vertebral body: biomechanical consequences[J]. J Neurosurg Spine, 2012, 16(4): 340-344. DOI: 10.3171/2011.12.SPINE11677. |
[36] | Walterscheid Z, O'Neill C, Ochs A, et al. Anterior cervical discectomy with fusion using a local source for cancellous autograft: a biomechanical analysis of vertebral body stability in an osteopenic bone model[J]. Geriatr Orthop Surg Rehabil, 2017, 8(3): 128-134. DOI: 10.1177/2151458517715739. |
[1] | Lin Yuqian, Zhao Wei, Wang Jianlin, Wang Yujuan, Yu Qinglin, Rao Libing, Li Li. Application of the individualized "Three-set" guide in discectomy [J]. Chinese Journal of Clinical Anatomy, 2023, 41(5): 599-602. |
[2] | LIANG Chang-xiang, ZHENG Xiao-qing, XIAO Dan, HUANG Yong-xiong, LIANG Guo-yan, CHEN Chong, YIN Dong, CHANG Yun-bing. Surgical essentials and early clinical effects of biportal endoscopic lumbar intervertebral fusion in the treatment of degenerative lumbar disease [J]. Chinese Journal of Clinical Anatomy, 2020, 38(6): 703-708. |
[3] | XUE Hou-jun, PAN Lei, HUANG Jie-bin, LEI Yu, WANG Shi-cheng, CHEN Wei-xiong. Comparison of the clinical application of percutaneous endoscopic TESSY and BESI technology in L5~S1 disc herniation [J]. Chinese Journal of Clinical Anatomy, 2020, 38(6): 709-714. |
[4] | YAN Hui-bo, JIN Da-di, LI Qing-chu, QIU Yi-yan, WU Yi, YANG Chang-sheng . The efficacy and safety of the surgical treatment of recurrent lumbar disc herniation with anterior lumbar interbody fusion [J]. Chinese Journal of Clinical Anatomy, 2020, 38(5): 600-604. |
[5] | WANG Shi-cheng, PAN Lei, XUE Hou-jun, LEI Yu. Complications analysis of percutaneous endoscopic interlaminar discectomy in the treatment of lumbar disc herniation [J]. Chinese Journal of Clinical Anatomy, 2020, 38(5): 605-608. |
[6] | LIU Qi, YANG Zhou, ZHU Qing-an. Research progress of oxidative stress and disc degeneration [J]. Chinese Journal of Clinical Anatomy, 2020, 38(3): 363-366. |
[7] | SU Bao-ke, WANG Wei, ZHANG Yun-feng, LI Zhi-jun, XU Yang-yang, WANG Hai-yan, LI Xiao-he. The research progress of endoscopic treatment of adolescent lumbar disc herniation [J]. Chinese Journal of Clinical Anatomy, 2019, 37(4): 469-470. |
[8] | JIANG Huan-Chang, WANG Ji-Xin, CHANG Beng. Analysis on the rotatable stability of slipping prophase lumbar spondylolysis when motion of flexion and extension [J]. Chinese Journal Of Clinical Anatomy, 2015, 33(1): 105-107. |
[9] | CENG Zhong-You, YAN Wei-Feng, TANG Hong-Chao, TUN Feng, ZHANG Jian-Jiao, JIN Cai-Yi. Surgery strategy of isthmic lumbar spondylolisthesis of grade Ⅱ or above [J]. Chinese Journal Of Clinical Anatomy, 2013, 31(5): 591-595. |
[10] | LIU Xian-Hong, OU Yun-Sheng, JIANG Dian-Meng, QUAN Zheng-Hua, ZHANG Le, CHEN Xin, HU Zhen-Meng. Initial curative effect comparision of ano-hydroxyapatite polyamide-66 cage and polyetheretherketone cage on anterior cervical intervertebral disc discectomy and fusion [J]. Chinese Journal Of Clinical Anatomy, 2012, 30(6): 687-692. |
[11] | CHEN Jian, LONG Hou-Qing, LIU Shao-Yu, XIE Gan-Hu, LI Gao-Miao, WEI Fu-Xin, HUANG Yang-Liang, LI Bi-Bao. Clinical significance and surgical treatment of lumbar disc herniation associated with separation of the ring apophysis in adolescents [J]. Chinese Journal Of Clinical Anatomy, 2010, 28(1): 90-. |
[12] | CHEN Ai-Dong, XU Rui-Sheng, TUN Ji-Dan, WANG Xue-Song, XUE Jun, BAO Ju-Liang. The changes of intervertebral contact area during lumbar spondylolisthesis [J]. Chinese Journal Of Clinical Anatomy, 2010, 28(1): 94-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|