[1] |
代长良, 田野. 巨噬细胞在动脉粥样硬化及血管炎症中作用的研究进展[J]. 心血管康复医学杂志, 2021, 30(1): 75-78. DOI: 10.3969/j.issn.1008-0074.2021.01.19.
|
[2] |
李博, 聂欣, 魏薇, 等. 成年疗养员血脂异常现状与动脉粥样硬化性心血管病危险评估[J]. 中国疗养医学, 2021, 30(5): 456-459. DOI: 10.13517/j.cnki.ccm.2021.05.003.
|
[3] |
姜志胜. 动脉粥样硬化学[M]. 北京: 科学出版社, 2017.
|
[4] |
齐炳才, 靳琦文, 胡杰, 等. 颈动脉粥样硬化斑块内新生血管的研究现状及进展[J]. 中国动脉硬化杂志, 2021, 29(4): 359-362, 368. DOI: 10.3969/j.issn.1007-3949.2021.04.016.
|
[5] |
张翔, 杜娟, 陈雅慧, 等. mRNA m6A甲基化修饰异常与疾病的研究进展[J]. 生命的化学, 2019, 39(2): 255-261. DOI: 10.13488/j.smhx.20180098.
|
[6] |
Zhao BS, He C. Fate by RNA methylation: m6A steers stem cell pluripotency[J]. Genome Biol, 2015, 16(1): 43. DOI: 10.1186/s13059-015-0609-1.
|
[7] |
Wu RF, Yao YX, Jiang Q, et al. Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m(6)A-YTHDF2-dependent manner[J]. Int J Obesity (Lond), 2018, 42(7): 1378-1388. DOI: 10.1038/s41366-018-0082-5.
|
[8] |
Lu N, Li XM, Yu JY, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6) a RNA methylation in piglets[J]. Lipids, 2018, 53(1): 53-63. DOI: 10.1002/lipd.12023.
|
[9] |
Loregger A, Raaben M, Nieuwenhuis J, et al. Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism[J]. Nat Commun, 2020, 11(1): 1128. DOI: 10.1038/s41467-020-14811-1.
|
[10] |
Bayraktar, EC, La K, Karpman K, et al. Metabolic coessentiality mapping identifies C12orf49 as a regulator of SREBP processing and cholesterol metabolism[J]. Nat Metab, 2020, 2(6): 487-498. DOI: 10.1038/s42255-020-0206-9.
|
[11] |
穆文娟, 杨丽洁, 宋赛赛, 等. 不同脂肪组织与动脉粥样硬化关系的研究进展[J]. 生命科学, 2021, 33(2): 166-175. DOI: 10.13376/j.cbls/2021019.
|
[12] |
万密密, 赵梓楠, 李婷, 等. 动脉粥样硬化治疗的新思路[J]. 江苏大学学报(医学版), 2021, 31(1): 1-5. DOI: 10.13312/j.issn.1671-7783.y200250.
|
[13] |
Tada H, Nohara A, Inazu A, et al. Remnant lipoproteins and atherosclerotic cardiovascular disease[J]. Clin Chim Acta, 2019, 490: 1-5. DOI: 10.1016/j.cca.2018.12.014.
|
[14] |
Lee J, Choi JH. Deciphering macrophage phenotypes upon lipid uptake and atherosclerosis[J]. Immune Netw, 2020, 20(3): e22. DOI: 10.4110/in.2020.20.e22.
|
[15] |
Zhao ZC, Meng JX, Su R, et al. Epitranscriptomics in liver disease: Basic concepts and therapeutic potential[J]. J Hepatol, 2020, 73(3): 664-679. DOI: 10.1016/J.JHEP.2020.04.009.
|
[16] |
Zhong H, Tang HF, Kai Y. N6-methyladenine RNA modification (m6A): an emerging regulator of metabolic diseases[J]. Curr Drug Targets, 2020, 21(11): 1056-1067. DOI: 10.2174/13894501216662002 10125247.
|
[17] |
Song TX, Yang Y, Jiang SW, et al. Novel insights into adipogenesis from the perspective of transcriptional and RNA N6-methyladenosine-mediated post-transcriptional regulation[J]. Adv Sci (Weinh), 2020, 7(21): 2001563. DOI: 10.1002/advs.202001563.
|
[18] |
Xiao J, Xiong YN, Yang LT, et al. POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation[J]. Protein Cell, 2021, 12(4): 279-296. DOI: 10.1007/S13238-020-00753-3.
|